Advertisement

Path Integrals in Quantum and Statistical Physics

  • G. J. Papadopoulos
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 34)

Abstract

Once upon a time, mathematics was a product of everyday experience. Later, it’s main source became the study of the physical world. This, on account of the unique capability of mathematics to describe the physical law, and furthermore, its ability to extract information from the mathematical form of the law. These two facts kept physicist and mathematician close for almost throughout the history of science. However, in recent years, the professional pure mathematician turned his mathematics into a self-propelling discipline for its own sake, thus progressively alienating himself from the needs of the physicist. This fall off in partnership made the physicist switch from mainly being the best customer to a manufacturer of mathematics as well. It would not then be unfair if we labelled the mathematics expounded in the present course as mathematics made in physical community.

Keywords

Partition Function Coherent State Path Integral Evolution Operator Langevin Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volterra V., Theory of Functionals and of Integral and Integrodifferential Equations (Blackie and Son, London and Glasgow, 1930).MATHGoogle Scholar
  2. 2.
    Daniell P.J., Ann. Math. 20 1 (1918).CrossRefGoogle Scholar
  3. 3.
    Wiener N., J. Math. Phys. Mass. Inst. Techn. 2 131 (1923);Google Scholar
  4. Wiener N., Proc. Lond. Hath. Soc. 22 454 (1924).CrossRefMATHGoogle Scholar
  5. 4.
    Chandrasekhar S., Rev. Mod. Phys. 15 1 (1943) Along similar lines :Papadopoulos G.J., Lectures in Theoretical Physics X A 269 (Eds.: Barut A.D. and Brittin W.E., Gordon and Breach, N . Y . , 1968) .MathSciNetADSCrossRefMATHGoogle Scholar
  6. 4a.
    Papadopoulos G.J., J. Phys. A 1 431 (1968).Some things, but transcribed to the quantum regime :ADSCrossRefGoogle Scholar
  7. 4b.
    Papadopoulos G.J., J. Phys. A 6 1479 (1973).ADSCrossRefGoogle Scholar
  8. 5.
    Dirac P.A.M., Selected Paper on Quantum Electrodynamics, p.312 (Ed.: Schwinger J., Dover Publi. Inc. N.Y. , 1958) .Google Scholar
  9. 6.
    Feynman R.P., Rev. Nod. Phys. 20 387 (1948).MathSciNetADSGoogle Scholar
  10. 6a.
    Feynman R.P., Phys. Rev. 76 769 (1949).MathSciNetADSCrossRefMATHGoogle Scholar
  11. 6b.
    Feynman R.P., Phys. Rev. 80 440 (1950).MathSciNetADSCrossRefMATHGoogle Scholar
  12. 6c.
    Feynman R.P., Phys. Rev. 84 108 (1951).MathSciNetADSCrossRefMATHGoogle Scholar
  13. 6d.
    Feynman R.P., Phys. Rev. 91 1301 (1953).MathSciNetADSCrossRefMATHGoogle Scholar
  14. 6e.
    Feynman R.P., A collection of Feynman’s works can be found in : Feynman R.P. and Hibbs R.A., Quantum Mechanics and Path Integrals (Mc Graw-Hill, N.Y., 1965).Google Scholar
  15. 6f.
    Feynman R.P., Statistical Mechanics (Addison-Wes1ey and Benjamin Inc., London, 1973).Google Scholar
  16. 6g.
    Gelfand I.M. and Yaglom A.M., J. Math. Phys. 1 48 (1960) .ADSCrossRefGoogle Scholar
  17. 6h.
    Brush S.G., Rev. Mod. Phys. 33 79 (1961).MathSciNetADSCrossRefMATHGoogle Scholar
  18. 7.
    Kirkwood J., Phys. Rev. 44 31 (1933).ADSCrossRefGoogle Scholar
  19. 8.
    Schwinger J., Phys. Rev. 82 914 (1951).MathSciNetADSCrossRefMATHGoogle Scholar
  20. 8a.
    Schwinger J., Phys. Rev. 91 713 (1953).MathSciNetADSCrossRefMATHGoogle Scholar
  21. 8b.
    Schwinger J., Proc. Acad. Sci. (U.S.) 44 956 (1958).MathSciNetADSCrossRefMATHGoogle Scholar
  22. 8c.
    Schwinger J., Phys. Rev. 115 721 (1959).MathSciNetADSCrossRefMATHGoogle Scholar
  23. 8e.
    Bogoliubov N. N., DoK. 99, 225 (1954).Google Scholar
  24. 8f.
    Edwards S.F., Proc. Roy. Soc. A 22 424 (1954).Google Scholar
  25. 8g.
    Edwards S.F., Analysis in Function Space, p.31 and p.167 (Eds.: Martin W.T. and Segal I., MIT Press Cambr. Mass . 1964) .Google Scholar
  26. 8h.
    Matthews P.T. and Salam A., Nuc. Cim. 2 120 (1955).MathSciNetADSCrossRefMATHGoogle Scholar
  27. 8i.
    Zymanzik K., Z. Naturforsch 9 A 409 (1954).Google Scholar
  28. 8k.
    Friedrichs K.O. and Shapiro H.N., Proc. Nat. Acad. Sci . (U.S.) 43 336 (1957) .MathSciNetADSCrossRefMATHGoogle Scholar
  29. 8m.
    Segal I.E., J. Math. Phys. 1 468 (1960). For Functional integrals in quantum field theory with a variety of techniques see :ADSCrossRefMATHGoogle Scholar
  30. 8n.
    Tarski J., Lectures in Theoretical Physics X-A p.443 (Eds.: Barut A.D. and Brittin W.E., Gordon and Breach, N. Y. , 1968) .Google Scholar
  31. 9.
    Edwards S.F. and Peierls R.E., Proc. Roy. Soc. A 22 424 (1954) .Google Scholar
  32. 10.
    Hopf E., J. Mech. and Rat. Anal. 1 87 (1952).MathSciNetMATHGoogle Scholar
  33. 11.
    Edwards S. F., J. Fluid. Mech. 18 239 (1964).MathSciNetADSCrossRefGoogle Scholar
  34. 11a.
    Rosen G., Phys. Fluids 10 2614 (1967).ADSCrossRefMATHGoogle Scholar
  35. 12.
    Brittin, W. E. , Phys. Rev. 106 843 (1957).MathSciNetADSCrossRefMATHGoogle Scholar
  36. 12a.
    Brittin W. E. and Chappell W.R., Lectures in Theoretical Physics VIII-A 101 (Eds.: Brittin, Univ. Cole Press, Boulder, 1965).Google Scholar
  37. 13.
    Bogoliubov N.N., Studies in Statistical Mechanics 1 1 (Eds.: de Boer J. and Uhlenbeck G.E., North-Holland Publ. Co., Amsterdam, 1962).Google Scholar
  38. 14.
    Hosokawa I., J. Math. Phys. 8 221 (1967).ADSCrossRefMATHGoogle Scholar
  39. 15.
    Edwards S.F., Proc. Phys. Soc. 85 613 (1965).MathSciNetADSCrossRefMATHGoogle Scholar
  40. 15a.
    Edwards S.F., Proc. Phys. Soc. 91 513 (1967).ADSCrossRefMATHGoogle Scholar
  41. 15b.
    Edwards S.F. and Freed K.F., J. Phys. C 3 739 (1970).ADSCrossRefGoogle Scholar
  42. 15c.
    Edwards S.F. and Grant J.W., H. Phys. A 6 1169 (1973).ADSCrossRefGoogle Scholar
  43. 15e.
    We mention here further works along Edwards’ line: Freed K.F.,J. Chem. Phys. 54 1453 (1971).ADSCrossRefGoogle Scholar
  44. 15g.
    Papadopoulos G.J. and Thomchick J., J. Phys. A 10 No . 7 (1977) .MathSciNetCrossRefGoogle Scholar
  45. 16.
    Thornber K.K. and Feynman R.P., Phys. Rev. B 1 4099 (1970) .ADSCrossRefGoogle Scholar
  46. 16a.
    Thornber K.K., Phys. Rev. B 3 1929 (1971). Earlier related works :ADSCrossRefGoogle Scholar
  47. 16b.
    Feynman R.P., Helwarth R.W., Iddings C.K., and Platzmann P.M., Phys. Rev. 127 1004 (1962).ADSCrossRefMATHGoogle Scholar
  48. 16c.
    Feynman R.P. and Vernon F.L., Ann. Phys. 24 118 (1963) .MathSciNetADSCrossRefGoogle Scholar
  49. 17.
    Feynman R.P., Phys. Rev. 97 660 (1955).ADSCrossRefMATHGoogle Scholar
  50. 18.
    Early work with operational capability : Edwards S.F. and Gulyaev Y.V., Proc. Roy. Soc. A 279 229 (1964).There follow :MathSciNetADSCrossRefGoogle Scholar
  51. 18a.
    Peak D. and Inomata A., J. Math. Phys. 10 1042 (1969)MathSciNetCrossRefGoogle Scholar
  52. 18b.
    Khandekar D.C. and Lawande S.V., J. Phys. A 5 812 (1972)ADSCrossRefGoogle Scholar
  53. 18c.
    Khandekar D.C, J. Phys. A 5L 57 (1972). For the hydrogen atom the treatment which exist proceeds via rectilinear c-ordinates :ADSCrossRefGoogle Scholar
  54. 18f.
    Govaerts M.J. and Devreese J. T., J. Math. Phys. 13 1070 (1972) .ADSCrossRefGoogle Scholar
  55. 19.
    De Witt B.S., Rev. Mod. Phys. 29 377 (1975).Google Scholar
  56. 19a.
    Arthurs A.M., Proc. Roy. Soc. A 313 445 (1969).ADSCrossRefMATHGoogle Scholar
  57. 19b.
    Arthurs A.M., Proc. Roy. Soc. A 318 523 (1970).ADSCrossRefGoogle Scholar
  58. 19c.
    Dowker J.S. and Mayes I.W., Nucl. Phys. B29 259 (1971)MathSciNetADSCrossRefGoogle Scholar
  59. 20.
    See Feynman (1950, 1951) in refs. (6) Morette G., Phys. Rev. 81 448 (1951).MathSciNetADSCrossRefGoogle Scholar
  60. 20a.
    Schulman L.S., Phys. Rev. 176 1558 (1969).MathSciNetADSCrossRefGoogle Scholar
  61. 20b.
    Hamilton J.F. Jr. and Schulman L.S., J. Math. Phys. 12 160 (1971) .MathSciNetADSCrossRefMATHGoogle Scholar
  62. 20c.
    Papadopoulos G.J. and Devreese J. T., Phys. Rev. D 13 2227 (1976) .MathSciNetADSCrossRefGoogle Scholar
  63. 21.
    Monttroll E.W. and Ward J.C., Phys. Fluids 1 55 (1958) .MathSciNetADSCrossRefGoogle Scholar
  64. 21a.
    Ter Haar D., Lectures in Theoretical Physics VIII- A 747 (Eds.: Brittin, W.E. , Univ. Cole Press, Boulder 1966) .See also books by Feynman and Hibbs and by Feynman in refs . (6).Google Scholar
  65. 22.
    See Matthews Salam C1955) in refs. (8). Klauder J.R., Ann. Phys., N.Y. 11 123 (1960).MathSciNetADSCrossRefMATHGoogle Scholar
  66. 22a.
    Schwaber S.S., J. Math. Phys. 3 831 (1962).ADSCrossRefGoogle Scholar
  67. 22b.
    Revzen M., Phys. Rev. 18 5337 (1969).Google Scholar
  68. 22c.
    Casher A., Lurié P., and Revzen M., J. Math. Phys. 9 1312 (1969) .ADSCrossRefGoogle Scholar
  69. 22d.
    Papadopoulos G.J., Proc, Antwerp Summer School, p.469 (Eds.: Devreese J.T. and Van Doren V., Plenum Press, London, 1976).Google Scholar
  70. 23.
    Papadopoulos G.J., Proc. Roy. Soc. A 350 547 (1976).ADSCrossRefGoogle Scholar
  71. 24.
    Einstein A., Investigations in the Theory of Brownian Movement p.1 (Dover, N.Y., 1956).Google Scholar
  72. 25.
    Langevin P., C.R. Acad. Sci. Paris 146 530 (1908).MATHGoogle Scholar
  73. 26.
    Kubo R., J. Phys. Soc. Japan 26 Suppl.1 (1969).ADSCrossRefGoogle Scholar
  74. 27.
    Kamper R.A., Symposium on the Physics of Superconducting Devices, p.1 (ONR Report, Charlottesville, Virginia University, 1967).Google Scholar
  75. 27a.
    Kamper R.A. and Zimmerman J.E., J. Appl. Phys. 42 132 (1971).ADSCrossRefGoogle Scholar
  76. 27b.
    Giffard R.P., Webb R.A. and Wheatley J.G., J. Low Temp . Phys. 6 533 (1972).ADSCrossRefGoogle Scholar
  77. 28.
    Abe R., Busseiron Kenk-yu 79 101 (1954).For evaluations and methods, see also earlier work of Nontroll (1952) in refs. (6).Google Scholar
  78. 29.
    Van Vleck J.H., Proc. Natn. Acad. Sci. 14 178 (1928)ADSCrossRefMATHGoogle Scholar
  79. 30.
    Papadopoulos G.J., J. Phys. A 7 183 (1974).MathSciNetADSCrossRefGoogle Scholar
  80. 30a.
    Papadopoulos G.J., J. Phys. A 4 773 (1971).ADSCrossRefMATHGoogle Scholar
  81. 30b.
    For further evaluations :Papadopoulos G.J., Phys. Rev. D 11 2870 (1975).ADSCrossRefGoogle Scholar
  82. 30c.
    Papadopoulos G.J. and Jones A. V. , J. Phys. F 1 593 (1971) .ADSCrossRefGoogle Scholar
  83. 31.
    Pauli W., Ausgewälte Kapitel der Feldquantisierung p. 139 (ETH, Zürich, 1952) .Google Scholar
  84. 32.
    Edwards S.F. and Sherrington D., Proc. Phys. Soc. 90 3 (1967) .ADSCrossRefGoogle Scholar
  85. 32a.
    Hubbard J., Phys. Rev. L 3 77 (1959).ADSCrossRefGoogle Scholar
  86. 32b.
    Sherrington D., J. Phys. C 4 402 (1971).ADSGoogle Scholar
  87. 32c.
    Mühlschlegel B., Functional Integration and its Application, p.124 (Eds.: Arthurs A.M., Clarendon Press, Oxford, 1975) .Google Scholar
  88. 33.
    Glauber R.J., Phys. Rev. 136 2766 (1963).MathSciNetADSCrossRefGoogle Scholar
  89. 33a.
    Louissell W.H., Radiation and Noise in Quantum Electronics (McGraw-Hill, N.Y., 1964). Wiegel F.W., Phys. Letts 16 C No.2 (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • G. J. Papadopoulos
    • 1
  1. 1.Department of PhysicsUniversity of AthensAthens 621Greece

Personalised recommendations