Advertisement

Path Integral Associated with the Fokker-Planck Equation

  • B. Mühlschlegel
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 34)

Synopsis

Path integrals are discussed from a general view point for classical processes and for quantum processes. The one-dimensional Fokker-Planck equation is then studied in detail. With reference to recent literature its Lagrangian is obtained. Besides explicite construction of the path integral, emphasis is put on the structure of the equation of motion and its relation to a self-adjoint problem.

Keywords

Gauge Transformation Master Equation Path Integral Constant Diffusion Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    R.L. Stratonovich, Topics in the Theory of Random Noise, Gordon and Breach, New York (1963)Google Scholar
  2. /2/.
    H. Dekker, Physica 85A, 363 (1976)MathSciNetADSGoogle Scholar
  3. /3/.
    H. Dekker, Physica 65A, 598 (1976)ADSGoogle Scholar
  4. /4/.
    R. Graham, Phys. Rev. Lett. 38, 51 (1977)MathSciNetADSCrossRefGoogle Scholar
  5. /4a/.
    R. Graham, Z. Physik B26, 281 (1977)ADSCrossRefGoogle Scholar
  6. /5/.
    H. Haken, Z. Physik B 24, 321 (1976)MathSciNetADSCrossRefGoogle Scholar
  7. /6/.
    W. Horsthemke and A. Bach, Z. Physik, B22, 189 (1975)ADSCrossRefGoogle Scholar
  8. /7/.
    R. Kubo in: Synergetics, H. Haken ed. B.G. Teubner, Stuttgart (1973)Google Scholar
  9. /7a/.
    R. Kubo, K. Matsuo and K. Kitahara, J. Statistical Phys. 9 51 (1973)ADSCrossRefGoogle Scholar
  10. /8/.
    E.S. Abers and B.W. Lee, Phys. Reports 9C, 1 (1973)ADSCrossRefGoogle Scholar
  11. /9/.
    J.S. Dowker in: Functional integration and its applications, ed. A.M. Arthurs, Clarendon Press, Oxford (1975)Google Scholar
  12. /10/.
    R.P. Feynman, Rev. Mod. Phys. 20, 267 (1948)MathSciNetADSCrossRefGoogle Scholar
  13. /11/.
    J.M. Hammersley, in: Functional integration and its applications, ed. A.M. Arthurs, Clarendon Press, Oxford (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • B. Mühlschlegel
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKöln 41Germany

Personalised recommendations