Path Integrals pp 455-477 | Cite as

Functional Equations and Their Treatment in Non-Equilibrium Statistical Mechanics

  • Iwao Hosokawa
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 34)


The classical BBGKY hierarchy is reformulated into a single functional equation. A suitable modification of this (neglecting the anti-irreversible or entropy-destructive process) gives an irreversible dynamics of the many-particle system evolution, which is called the functional random-walk model.

Then, the basic (functional-differential) equation governs formally the time development of the probability density functional of the particle-number density in the one-body phase space. Some topics, mathematical as well as physical, around this equation are presented. For instance, the integral representation of the equation expresses an ensemble of generalized Brownian paths in the function space of the particle-number density; any state of the system approaches irreversibly to the ultimate equilibrium state (if the system is closed), for which the probabilistic mode in the function space is nothing other than of canonical form, etc.


Riemannian Space Vlasov Equation Generalize Particle Kolmogorov Equation Canonical Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For example, see I. Prigogine, Non-Equilibrium Statistical Mechanics (Interscience Publishers, Inc., New York, 1962);MATHGoogle Scholar
  2. 1a.
    T. Y. Wu, Kinetic Equations of Gases and Plasmas (Addison-Wesley Publ. Co., Inc., Reading, Mass., 1966).Google Scholar
  3. 2.
    A. I. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover Publ., Inc., New York, 1949).MATHGoogle Scholar
  4. 3.
    I. Hosokawa, Prog. Theor. Phys. (Kyoto) 52, 1513 (1974).ADSCrossRefGoogle Scholar
  5. 4.
    , N. N. Bogoliubov, in Studies in Statistical Mechanics, J. de Boer and G. E. Uhlenbeck, Eds. (North-Holland Publ. Co., Amsterdam, 1962), Vol. 1.Google Scholar
  6. 5.
    I. Hosokawa, J. Hath. Phys. 8, 221 (1967).ADSMATHGoogle Scholar
  7. 6.
    I. Hosokawa, J. Math. Phys. 11 657 (1970).ADSCrossRefGoogle Scholar
  8. 7.
    E. Hopf, J. Ratl. Mech. Anal. 1, 87 (1952).MATHGoogle Scholar
  9. 8.
    E. A. Novikov, Zh. Exsp. Teor. Fiz. 47, 1919 (1964)Google Scholar
  10. [Soviet-Phys. — JETP 20, 1290 (1965)].
    [Soviet-Phys. — JETP 20, 1290 (1965)];I. Hosokawa, J. Phys. Soc. Japan 25, 271 (1968).ADSCrossRefGoogle Scholar
  11. 9.
    Iu. L. Klimontovich, Zh. Exsp. Teor. Fiz. 33, 982 (1957)Google Scholar
  12. [Soviet-Phys. — JETP 6, 753 (1958)].
    ; Iu. L. Klimontovich The Statistical Theory of Non-Equilibrium Vnocesses in a ?lasma (Pergamon Press, Inc., New York, 1967).Google Scholar
  13. 10.
    A. Kolmogorov, Math. Ann. 108, 149 (1933).MathSciNetCrossRefMATHGoogle Scholar
  14. 11.
    R. D. Richtmyer and K. W. Morton, Difference Methods for Ini-tial-Value Problems (Interscience Publishers, Inc., New York, 1967).Google Scholar
  15. 12.
    I. Hosokawa, J. Hath. Phys. 14, 1374 (1973).ADSGoogle Scholar
  16. 13.
    C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1959).Google Scholar
  17. 14.
    A. H. Gray, Jr., J. Math. Phys. 6, 644 (1965).ADSCrossRefGoogle Scholar
  18. 15.
    A. A. Vlasov, Many-Particle Theory (Moscow-Leningrad, 1950, trans. AEC-tr-3406, Washington, D. C., 1959), Part 2, Chap.1; also the book by Wu in Ref. 1, Chap. 5.Google Scholar
  19. 16.
    E. T. Jaynes, Phys. Rev. 106, 620 (1957).MathSciNetADSCrossRefMATHGoogle Scholar
  20. 17.
    I. Hosokawa, J, Stat. Phys. 15, 87 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Iwao Hosokawa
    • 1
  1. 1.Dept. Mech. Engrg.Iwate UniversityMorioka 020Japan

Personalised recommendations