Path Integrals pp 383-418 | Cite as

Functional Integral Approach to Some Models of Solid State Physics

  • Bernhard Mühlschlegel
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 34)


The method of Gaussian functional averages is applied to the local Anderson model of a magnetic impurity in a metal and to the extended Ising model of ferro-magnetism in greater detail. Approximations for these systems are used also in the functional treatment of normal and superconducting many-body problems, and of multi-side models of Coulomb- corre 1ated electrons in bands.


Partition Function Static Approximation Ising Model Hubbard Model Auxiliary Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.P. Feynman and A.R. Hibbs, Quantum mechanics and path integrals, Mc Graw-Hill, New York (1965)MATHGoogle Scholar
  2. 2.
    See for a review: F.W. Wiegel, Path integral methods in statistical mechanics. Phys. Reports 16C, 57 (1975).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    N. N. Bogoliubov and D.U. Shirkov, Introduction to the theory of quantized fields. Interscience Publ. New York (1959).Google Scholar
  4. 4.
    R.L. Stratonovich, Dok1. Akad. nauk. SSSR 115 (1957). Translated Sov. Phys. Dok l. 2 416 (1958);Google Scholar
  5. 4a.
    J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).ADSCrossRefGoogle Scholar
  6. 4b.
    J. Hubbard, A general and more recent contribution which also includes Green functions and linear response is due to D.Sherrington, J.Phys. C4, 401 (1971).Google Scholar
  7. 5.
    For a short review see: B. Mühischlegel, in Functional integration and its applications, ed. A.M. Arthurs, Clarendon Press, Oxford (1975).Google Scholar
  8. 6.
    Phase transitions and critical phenomena (eds. C.Domb and M.S.Green), volume 6, Academic Press, New York (1976).Google Scholar
  9. 7.
    C. Kittel, Quantum theory of solids, Wiley, New York (1963).Google Scholar
  10. 8.
    W.A. Harrison, Solid state theory, Mc Graw-Hill, New York (1970).Google Scholar
  11. 9.
    D.J. Amit and H. Keiter, J.Low Temp.Phys. 11 603 (1973).ADSCrossRefGoogle Scholar
  12. 10.
    D.R. Hamann and J. R. Schrieffer, in Magnetism (ed. H. Suhl), Vol.V, p.237, Academic Press, New York (1973).Google Scholar
  13. 11.
    H. Keiter, Phys.Rev. B2, 3777 (1970).MathSciNetADSCrossRefGoogle Scholar
  14. 12.
    H.R. Krishna-Murthy, K.B. Wilson and J.W. Wilkins, Phys.Rev.Lett. 35, 1101 (1975), and Int.Conf. on Valence Instabilities, Rochester, N.Y. 1976.ADSCrossRefGoogle Scholar
  15. 13.
    K.G. Wilson, Re v. Hod. P hy s. 47, 773 (1975).ADSGoogle Scholar
  16. 14.
    M. Kac, Phys. Fluids 2, 8 (1959) - For generalizations see L. W. J. den Duden, H.W.Capel, J. H. H. Perk and P. A. J. Tindemans, Physica 85A, 51 and 425 (1976).ADSCrossRefMATHGoogle Scholar
  17. 15.
    B. Mühlschlegel and J. Zittartz, Z.Physik 175, 533 (1963).CrossRefGoogle Scholar
  18. 16.
    See, also for further references, R. Brout, Phase Transitions, Benjamin, New York (1965).Google Scholar
  19. 17.
    J. Zittartz, Phys.Rev. 154, 529 (1967).ADSCrossRefGoogle Scholar
  20. 18.
    K.G. Wilson and J. Kogut, The renorma lization group and the ε-expansion, Phys.Reports 12, 75 (1974).ADSCrossRefGoogle Scholar
  21. 19.
    J. Zittartz, Z. Physik 180, 219 (1964);MathSciNetADSCrossRefGoogle Scholar
  22. 19a.
    U. Everts, Z.Physik 199, 211 (1967).ADSGoogle Scholar
  23. 20.
    B. Nühlschlegel, J. Math.Phys. 3, 522 (1962).ADSCrossRefGoogle Scholar
  24. 21.
    J. S. Langer, Phys.Rev. 134A, 553 (1964).ADSCrossRefGoogle Scholar
  25. 22.
    T.M. Rice, J. Hath.Phys. 8, 1581 (1967).ADSGoogle Scholar
  26. 23.
    R.F. Hassing and J.W. Wilkins, Phys.Rev. B7, 1890 (1973).ADSCrossRefGoogle Scholar
  27. 24.
    B. Nühlschlegel, D. J. Scalapino and R. Denton, Phys. Rev. B6, 1767 (1972).ADSCrossRefGoogle Scholar
  28. 25.
    H.J. Leder, Thesis, Universität Köln (1977).Google Scholar
  29. 26.
    See, also for other references: W. Weiler, physica stat. sol. (b)54, 611 (1972)Google Scholar
  30. 26a.
    See, also for other references: W. Weiler, physica stat. sol. 57, 593 (1973);Google Scholar
  31. 26b.
    See, also for other references: W. Weiler, physica stat. sol. 60, 783 (1973).Google Scholar
  32. 27.
    J.A. Hertz, Phys.Rev. B14, 1165 (1975).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Bernhard Mühlschlegel
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zu KölnGermany

Personalised recommendations