Advertisement

Path Integrals pp 315-357 | Cite as

Path Integrals and Continuum Fröhlich Polarons

  • J. T. Devreese
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 34)

Synopsis

In this set of lectures, the physics of Fröhlich polarons is discussed in terms of the Feynman approach to the polaron problem. Attention is given to the implicit introduction of the polaron center of gravity in the action by elimination of the phonon variables. The variational principle introduced by Feynman is discussed and a connection with approximants of Stieltjes integrals is indicated. The accuracy of the groundstate energy of the Feynman model is tested, using an exactly soluble one-dimensional model. The linear response of polarons is considered. The dynamical aspects are investigated on physical as well as mathematical consistency requirements. The path integral approach to linear response is compared with self-consistent solutions of the Heisenberg equations of motion for the polaron. The static aspects of the lenart response are considered and the 3/2 kT controversy of the mobility is discussed critically.

Keywords

Boltzmann Equation Path Integral Symmetrical Model Longitudinal Optical Phonon Kubo Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Landau, Phys. Z. Sowjetun. 3, 664 [1933].MATHGoogle Scholar
  2. [2]
    H. Fröhlich, H. Pelzer and S. Zienau Phil. Plag. 41, 221 (1950).MATHGoogle Scholar
  3. [3]
    H. Fröhlich, Advances in Physics 3, 32 5 (1954).CrossRefGoogle Scholar
  4. [3a]
    G.R. Allcock, Advances in Physics 5, 412 (1956).ADSCrossRefGoogle Scholar
  5. [3b]
    E. P. Gross, in “Mathematical Methods in Solid State and Superfluid Theory”, edited by R.C. Clark and G.D. Derrick, Plenum Press, New York (1968).Google Scholar
  6. [3c]
    J. Appel, in “Solid State Physics, Vol. 21”, edited by F. Seitz, D. Turnbull and H. Ehrenreich, Academic Press (1958).Google Scholar
  7. [4]
    C. Kuper and G. Whitfield (editors), “Polarons and Excitons”, Oliver & Boyd (1963).Google Scholar
  8. [5]
    J.T. Devreese (editor), “Polarons in Ionic Crystals and Polar Semiconductors”, North Holland (1972).Google Scholar
  9. [6]
    T.D. Lee, F.E. Low and D. Pines, Phys. Rev. 90, 297 (1953).MathSciNetADSCrossRefMATHGoogle Scholar
  10. [7]
    A.V. Tulub, Soviet Phys. JETP 14, 1301 (1962).Google Scholar
  11. [8]
    N.N. Bogolubov and S.V. Tjablikov, Zh. Eksp. Teor. Fiz. 19, 256 (1949).Google Scholar
  12. [9]
    V.M. Buimistrov and S.I. Pekar, Soviet Phys. JETP 5, 970 (1957).Google Scholar
  13. [10]
    V.M. Buimistrov and S.I. Pekar, Soviet Phys. JETP 6, 977 (1958).ADSGoogle Scholar
  14. [11]
    D. Matz and B.C. Burkey, Phys. Rev. B3, 3487 (1971).ADSCrossRefGoogle Scholar
  15. [11a]
    D. Matz, in “Polarons in Ionic Crystals and Polar Semiconductors”, edited by J.T. Devreese, North Holland (1972), p. 463.Google Scholar
  16. [12]
    W. Van Haeringen, Phys. Rev. 137, 1902 (1965).ADSCrossRefGoogle Scholar
  17. [13]
    R.P. Feynman, Phys. Rev. 127, 1004 (1955).ADSCrossRefGoogle Scholar
  18. [14]
    E. Kartheuser in “Polarons in Ionic.Crystals and Polar Semiconductors”, edited by J.T. Devreese, North Holland (1972).Google Scholar
  19. [15]
    J.T. Devreese, R. Evrard, E. Kartheuser, Phys. Rev. B12, 3353 (1975).ADSCrossRefGoogle Scholar
  20. [16]
    T.D. Schultz,in “Polarons and Excitons”, edited by C. Kuper and G. Whitfield, Oliver & Boyd (1963).Google Scholar
  21. [17]
    R. Evrard and J. Devreese, in “Lectures on Solid State Physics, Vol. I”. Hercegnovi (1963).Google Scholar
  22. [18]
    R. Evrard, Thesis. Liège (1964).Google Scholar
  23. [19]
    E.P. Gross, Phys. Rev. 100, 1571 (1955).ADSCrossRefMATHGoogle Scholar
  24. [20]
    H.F. Wall, “Analytic Theory of Continued Fractions”, Van Nostrand (1967), p. 15.Google Scholar
  25. [21]
    J. Luttinger, see his contribution to these proceedings. V. Samathiyakanit, J. Phys. C7, 2849 (1974).Google Scholar
  26. [21a]
    E.P. Gross, Journal of Stat. Phys. 17, 265 (1977).ADSCrossRefGoogle Scholar
  27. [22]
    R.P. Feynman, R. Hellwarth, C. Iddings and P.M. Platzman, Phys. Rev. 127, 1004 (1962).ADSCrossRefMATHGoogle Scholar
  28. [23]
    J.T. Devreese, W. Huybrechts and L. Lemmens, Phys. Stat. Sol. (b) 48, 77 (1971).Google Scholar
  29. [24]
    J.T. Devreese, J. De Sitter and N. Goovaerts, Phys.Rev. B5, 2367 (1972).ADSCrossRefGoogle Scholar
  30. [25]
    K.K. Thornber, Phys. Rev. B3, 192 9 (1971).Google Scholar
  31. [26]
    P.N. Platzman, in “Polarons and Excitons”, edited by C. Kuper and G. Whitfield, Oliver and Boyd (1963).Google Scholar
  32. [27]
    K.K. Thornber, in “Polarons in Ionic Crystals and Polar Semiconductors”, edited by J.T. Devreese, North Holland (1972).Google Scholar
  33. [28]
    K.K. Thornber, Phys. Rev. B9, 3489 (1974).ADSCrossRefGoogle Scholar
  34. [29]
    K.K. Thornber, in “Linear and Nonlinear Electron Transport in Solids”, edited by J.T. Devreese and V.E. Van Doren, Plenum Press (1976).Google Scholar
  35. [30]
    K.K. Thornber and R.P. Feynman, Phys. Rev. B1, 4099 (1970).ADSCrossRefGoogle Scholar
  36. [31]
    V.L. Gurevich, I.E. Lang and Yu. A. Firsov, Soviet Phys. Solid State 4, 918 (1962).Google Scholar
  37. [32]
    E. Kartheuser, R. Evrard and J.T. Devreese, Phys. Rev. Lett. 22, 94 (1969).ADSCrossRefGoogle Scholar
  38. [33]
    S.I. Pekar, “Research in Electron Theory of Solids”, AEC-TR-5575 U.S. GPO, Washington, D.C. (1963).Google Scholar
  39. [34]
    L.F. Lemmens, J. De Sitter and J.T. Devreese, Phys. Rev. B8, 2717 (1973).ADSCrossRefGoogle Scholar
  40. [35]
    L.F. Lemmens and J.T. Devreese, Solid State Commun. 12, 1067 (1973).ADSCrossRefGoogle Scholar
  41. [36]
    J.T. Devreese, L.F. Lemmens and J. Van Royen, Phys. Rev. B15, 1212 (1977).ADSCrossRefGoogle Scholar
  42. [37]
    F. E. Low and D. Pines, Phys. Rev. 98, 914 (1958).Google Scholar
  43. [38]
    D.C. Langreth and L.P. Kadanoff, Phys. Rev. 133, A1070 (1969).CrossRefGoogle Scholar
  44. [39]
    Y. Osaka, Prog. Theoret. Phys. (Kyoto) 25, 517 (1971).Google Scholar
  45. [40]
    L.P. Kadanoff, Phys. Rev. 130, 1364 (1963).MathSciNetADSCrossRefGoogle Scholar
  46. [41]
    J.T. Devreese and R. Evrard, in “Linear and Nonlinear Electron Transport in Solids”, edited by J.T. Devreese and V.E. Van Doren, Plenum Press (1976).Google Scholar
  47. [42]
    J.T. Devreese and J. Van Royen, to be published.Google Scholar
  48. [43]
    J.T. Devreese and R. Evrard, Phys. Stat. Sol. (b) 78, 8 5 (1976).Google Scholar
  49. 1.
    Pekar, S., 1954 “Untersuchungen über die Electronentheorie der Kristalle” (Akademie-Verlag, Berlin).Google Scholar
  50. 2.
    Lee, T.D., Low, F. E., and Pines, D., Phys. Rev., 90, 297, 1953.MathSciNetADSCrossRefMATHGoogle Scholar
  51. 3.
    Feynman, R. P., Phys. Rev., 97, 660 (1955).Google Scholar
  52. 3a.
    Feynman, R. P. Schultz, T. D. in “Polarons and Excitons” (Ed. Kuper G. Whitfield) (Oliver Boyd: London, 1963).Google Scholar
  53. 4.
    Langreth, D. C., and Kadanof, L. P., Phys. Rev., 133, A270, 1964.CrossRefGoogle Scholar
  54. 5.
    Osaka, Y., Progr. Theoret.Phys., 25, 517, 1961.ADSCrossRefMATHGoogle Scholar
  55. 6.
    Ascarelij, G., and Brown, F. C., Phys. Rev. Letters, 9, 209, 1962.ADSCrossRefGoogle Scholar
  56. 7.
    Ahrenkiel, R. K., and Brown, F. C., Phys. Rev., 136, A223, 1964.ADSCrossRefGoogle Scholar
  57. 8.
    Masumi, T., Ahrenkiel, R. K., and Brown, F. C., Phys. stat. sol., 11, 163, 1965.ADSCrossRefGoogle Scholar
  58. 9.
    Evrard, R., Phys. Lett., 14, 295, 1965.ADSCrossRefGoogle Scholar
  59. 10.
    Devreese, J., and Evrard, R., Phys. Lett., 11, 278, 1964.ADSCrossRefGoogle Scholar
  60. 11.
    Feynman, R. P., Hellwarth, R. W., Iddings, C. K., and Platzman, P. M., Phys. Rev., 127, 1004, 1962.ADSCrossRefMATHGoogle Scholar
  61. 12.
    Larsen, D. M., Phys. Rev., 133, A860, 1964.ADSCrossRefGoogle Scholar
  62. 13.
    Larsen, D. M., Phys. Rev., 135, A419, 1964.ADSCrossRefGoogle Scholar
  63. 14.
    Whitfield, G., and Puff, R., Phys. Rev., 139, A338, 1965.ADSCrossRefGoogle Scholar
  64. 15.
    Devreese, J., and Evrard, R., Phys. stat. sol., 3, 2133, 1963.ADSCrossRefGoogle Scholar
  65. 16.
    Devreese, J., and Evrard, R., Phys. stat. soi., 9, 403, 1965.ADSCrossRefGoogle Scholar
  66. 17.
    Gross, E. P., Phys. Rev., 84, 818, 1951.ADSCrossRefMATHGoogle Scholar
  67. 18.
    Devreese, J. Thesis, University of Louvain, 1964.Google Scholar
  68. 19.
    Fröhlich, H., Pelzer, H., and Zienau, S., Phil. Mag., 41, 221, 1950.MATHGoogle Scholar
  69. 20.
    Devreese, J., and Evrard, R., Phys. Lett., 23, 196, 1966.ADSCrossRefGoogle Scholar
  70. 21.
    Feynman, R. P., Rev. Mod. Phys., 20, 367, 1948.MathSciNetADSCrossRefGoogle Scholar
  71. 22.
    Feynman, R. P., and Hibbs, A. R., “Quantum Mechanics and Path Integrals” (McGraw, Hill New York, 1965).MATHGoogle Scholar
  72. 23.
    Evrard, R., and Devreese, J., “Discussion of the principal methods of polaron theory”, 8th Jugoslav Summer School of Physics, Hercegnovi 1963.Google Scholar
  73. 24.
    Evrard, R. Thesis, Liège 1964.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • J. T. Devreese
    • 1
    • 2
  1. 1.Institute of Applied MathematicsR.U.C.A.AntwerpenBelgium
  2. 2.Dept. NatuurkundeUniversitaire Instelling AntwerpenWilrijkBelgium

Personalised recommendations