Advertisement

The Role of Surface Contaminants in the Solid-State Welding of Metals

  • J. L. Jellison

Abstract

Although no unified theory of solid state welding has been developed, the generally agreed upon requisite for producing a solid state weld is that metallic surfaces must be brought sufficiently close together that short-range interatomic attractive forces operate. In general, this involves both (1) intimate mating of surfaces and (2) removal of surface barriers to atomic bonding.

Keywords

Organic Contaminant Interfacial Shear Stress Weld Interface Deformation Welding Surface Contaminant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Milner and G. W. Rowe, Fundamentals of solid phase welding, Metal. Rev.7, 433–480 (1962).CrossRefGoogle Scholar
  2. 2.
    R. F. Tylecote, The Solid Phase Welding of Metals, St. Martin’s Press, New York (1968).Google Scholar
  3. 3.
    R. F. Tylecote, Investigations on pressure welding, Br. Welding J. 1, 117–135 (1954).Google Scholar
  4. 4.
    R. F. Tylecote, D. Howd, and J. E. Furmidge, Influence of surface films on pressure welding of metals, Br. Welding J. 5, 21–38 (1958).Google Scholar
  5. 5.
    D. H. Buckley, LEED and Auger Studies of Effect of Oxygen on Adhesion of Clean Iron (001) and (011) Surfaces, NASA TND 5756, Lewis Research Center, NASA, Cleveland, Ohio (1970).Google Scholar
  6. 6.
    H.A. Mohamed and J. Washburn, Mechanism of solid state pressure welding, Welding J. 54, 302s–309s (1975).Google Scholar
  7. 7.
    W. D. Ludemann, A Fundamental Study of the Pressure Welding of Dissimilar Metals through Oxide Layers, Lawrence Radiation Laboratory Report UCRL-50744, Livermore, Calif. (1969).Google Scholar
  8. 8.
    K. Tanuma and T. Hashimoto, Effect of surface treatment in high vacuum on solid phase weldability, Trans. Natl. Research Institute Metals 14, 123–133 (1972).Google Scholar
  9. 9.
    A. S. Gulyaev and L. V. Skoblova, The quality of the joint in cold roll welded clad metal, Automatic Welding 31, 36–39 (1978).Google Scholar
  10. 10.
    W. P. Gilbreath, in: Adhesion or Cold Welding of Materials in Space Environments, STP No. 431, pp. 128–148, American Society for Testing and Materials, Philadelphia, Pa.Google Scholar
  11. 11.
    D. H. Buckley, Influence of Chemisorbed Films on Adhesion and Friction of Clean Iron, NASA TND 4775, Lewis Research Center, NASA, Cleveland, Ohio (1968).Google Scholar
  12. 12.
    J. L. Jellison, Effect of surface contamination on the thermocompression of gold, IEEE Trans. Parts, Hybrids and Packaging PHP-11, 206–211 (1975).Google Scholar
  13. 13.
    L. R. Vaidyanath, M. G. Nicholas, and D. R. Milner, Pressure welding by rolling, Br. Welding J. 6, 13–28(1959).Google Scholar
  14. 14.
    L. R. Vaidyanath and D. R. Milner, Significance of surface preparation in cold pressure welding, Br. Welding J. 7, 1–6(1960).Google Scholar
  15. 15.
    S. B. Ainbinber and F. F. Klovoka, Adhesion of Metals and Their Stability under Complex Stresses, Latv. PSB Zinat Akad. Vestis (1953), No. 4, pp. 113–116.Google Scholar
  16. 16.
    J. R. Whitehead, Surface deformation and friction of metals at light loads, Proc. Roy. Soc. A201, 109–124 (1950).Google Scholar
  17. 17.
    R. Wilson, Influence of oxide films on metallic friction, Proc. Roy. Soc. A212, 450–452, 480–482 (1952).Google Scholar
  18. 18.
    J. A. Donelan, Industrial practice in cold pressure welding, paper presented at a conference organized by Univ. of Birmingham, Br. Welding J. 6, 5 (1959).Google Scholar
  19. 19.
    W. P. Gilbreath, The Influence of Gaseous Environments on the Self-adhesion of Metals, NASA Report, NASA TND 4868, Moffett Field, Calif. (1968).Google Scholar
  20. 20.
    F. P. Bowden and W. R. Throssell, Adsorption of water vapour on solid surfaces, Proc. Roy. Soc. A209, 297–308 (1951).Google Scholar
  21. 21.
    J. G. Vaughn and M. K. Raut, Tin contamination during surface cleaning for thermocompression bonding, in Proceedings 1984 International Symposium on Microelectronics, Dallas, Tex. (1984), pp. 424–427.Google Scholar
  22. 22.
    D. H. Buckley, Interaction of Methane, Ethane, Ethylene, and Acetylene with an Iron (001) Surface and Their Influence on Adhesion Studied with Leed and Auger, NASA TND 582, Lewis Research Center, NASA, Cleveland, Ohio (1970).Google Scholar
  23. 23.
    D. H. Buckley, Absorption of Ethylene Oxide and Vinyl Chloride on an Iron (001) Surface and Effect of These Films on Adhesion, NASA TND 5999, Lewis Research Center, NASA, Cleveland, Ohio (1970).Google Scholar
  24. 24.
    F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Clarendon Press, London (1954).Google Scholar
  25. 25.
    E. Rabinowicz, Friction and Wear of Materials, John Wiley and Sons, New York (1965).Google Scholar
  26. 26.
    R. E. Cuthrell, Quantitative Detection of Molecular Layers with the Indium Adhesion Tester, Sandia Labs Report SC-DR-66–300, Albuquerque, N.M. (1966).Google Scholar
  27. 27.
    P. H. Holloway and D. W. Bushmire, Detection by Auger electron spectroscopy and removal by ozonization of photoresist residues, in: Proceedings of the Twelfth Reliability Physics Symposium Las Vegas, Nev. (1974), pp. 180–186.Google Scholar
  28. 28.
    I. B. Baranov, Cold Welding of Plastic Metals, OTS: 63–21785, Joint Publication Reserve Service: 19103 (1963), English translation, available from Office of Technical Services, U.S. Government Printing Office.Google Scholar
  29. 29.
    A. P. Semenov, Phenomenon of seizure and its investigationWear4(1), 1–9 (January/February, 1961).CrossRefGoogle Scholar
  30. 30.
    J. L. Jellison, Kinetics of thermocompression bonding to organic contaminated gold surfaces, IEEE Trans. Parts, Hybrids and Packaging PHP-13, 132–137 (1977).Google Scholar
  31. 31.
    F. H. Wetzel, Discussion on paper by P. F. Bowden, in: Adhesion and Cohesion (P. R. Weiss, ed.), p. 143, Elsevier, TP968 S95 (1962).Google Scholar
  32. 32.
    J. K. Nesheim, The effects of ionic and organic contamination on wirebond reliability, in: Proceedings of the 1984 International Symposium on Microelectronics, Dallas, Tex. (1984), pp. 77–78.Google Scholar
  33. 33.
    J. P. Williamson, J. B. P. Greenwood, and J. Harris, The influence of dust particles on the contact of solids, Proc. Roy. Soc. A237, 560–573 (1956).Google Scholar
  34. 34.
    W. A. Bryant, Method for specifying hot isostatic pressure welding parameters, Welding J. 54, 433s–435s (1975).Google Scholar
  35. 35.
    A. B. Kinzel, Adam’s Lecture—Solid phase welding, Welding J. 23, 1124–1144 (December, 1944).Google Scholar
  36. 36.
    L. Fine, C. H. Maak, and A. R. Ozanich, Fundamentals affecting the bond in pressure welds, Welding J. 25, 517–529 (1946).Google Scholar
  37. 37.
    J. L. Ham, Mechanisms of surface removal from metals in space, Aerospace Eng. 20–21, 49–54 (1961).Google Scholar
  38. 38.
    N. Ahmed and J. J. Svitak, Characterization of gold-gold thermocompression bonding, in: Proceedings of the 25th Electronic Components Conference, IEEE, Washington, D.C. (1975), pp. 52–63.Google Scholar
  39. 39.
    P. K Wright, D. A. Snow, and C. K. Tay, Interfacial conditions and bond strength in cold pressure welding by rolling, Metals Technol.5(1), 24–31 (Jan. 24, 1978).Google Scholar
  40. 40.
    R. P. Stapleton, Surface elongation and interfacial sliding during gold-gold thermocompression bonding, Master’s Thesis, Department of Metallurgy, Lehigh University, Bethlehem, Pa. (1974).Google Scholar
  41. 41.
    O. L. Anderson, Role of surface shear strains in adhesion of metals, Wear 3, 253–273 (July-August, 1960).CrossRefGoogle Scholar
  42. 42.
    F. P. Bowden and G. W. Rowe, The adhesion of clean metals, Proc. Roy. Soc. A233, 429–442 (1956).Google Scholar
  43. 43.
    E. Holmes, Influence of relative interfacial movement and frictional restraint in cold pressure welding, Br. Welding J. 6, 29–37 (1959).Google Scholar
  44. 44.
    V. W. Cooke and A. Levy, Solid phase bonding of aluminum alloys to steel, J. Metals7, 28–35 (1949).Google Scholar
  45. 45.
    J. L. Knowles, High Strength, Low-Temperature Bonding of Beryllium and Other Materials, Lawrence Radiation Laboratories Report, UCRL-50766, Livermore, Calif. (1970).Google Scholar
  46. 46.
    R. F. Tylecote, Solid phase bonding of gold to metals, Gold Bull. 11, 74–80 (1978).CrossRefGoogle Scholar
  47. 47.
    K. L. Johnson and D. V. Keller, Jr., Effect of contamination on the adhesion of metallic couples in ultrahigh vacuum, J. Appl. Phys. 38, 1896–1904 (1967).CrossRefGoogle Scholar
  48. 48.
    J. L. Jellison, Solid Phase Welding of Transition Members of Radioisotope Thermoelectric Generators, Sandia Laboratories Report, SAND75–0053, Albuquerque, N. Mex. (1975).CrossRefGoogle Scholar
  49. 49.
    R. F. Tylecote, Investigations on pressure welding, Br. Welding J. 1, 117–135 (1954).Google Scholar
  50. 50.
    A. T. English and F. L. Hokanson, Studies of bonding mechanisms and failure modes in thermocompression bonds of gold plated Ti-Au metallized substrates, in: Proceedings of the Ninth Annual Reliability Physics Symposium, Las Vegas, Nev. (1971), pp. 178–186.CrossRefGoogle Scholar
  51. 51.
    T. Hayasaka and S. Hattori, On the mechanism of thermocompression bonding of gold beam leads, Review Electronic Communication Laboratory 23, 344–352 (1975).Google Scholar
  52. 52.
    R. R. Herring and M. Meshii, Thermally activated deformation of gold single crystals, Metal. Trans.4, 2109–2114(1973).CrossRefGoogle Scholar
  53. 53.
    K. A. Osipov, Activation Processes in Solid Metals and Alloys, American Elsevier Publishing Company, Inc., New York (1964).Google Scholar
  54. 54.
    R. M. Brick, Hot roll bonding of steel, Welding J. 49, 440s–444s (1970).Google Scholar
  55. 55.
    R. Blickensderfer, Bonding of titanium and molybdenum to iron by vacuum rolling, Thin Solid Films 54, 342–343 (1978).CrossRefGoogle Scholar
  56. 56.
    C. E. Albright, Solid State Bonding, SME-AD75–853, Society of Mechanical Engineers, Dearborne, Michigan (1975).Google Scholar
  57. 57.
    W. M. Spurgeon, S. K. Rhee, and R. S. Kiwak, Diffusion bonding of metals, Bendix Technical J.—Materials and Processing, 2(1), 24–29, (1969).Google Scholar
  58. 58.
    J. A. Weiner, G. V. Clatterbaugh, H. K. Charles, and B. M. Romenesko, Gold ball bond strength effects of cleaning, metallization, and bonding parameters, in: Proceedings of the 1983 Electronic Components Conference, Orlando, Fla. (1983), pp. 208–220.Google Scholar
  59. 59.
    D. F. O’Kane and K. L. Mittal, Plasma cleaning of metal surfaces, J. Vac. Sci. Technol. 11, 567–569 (1974).CrossRefGoogle Scholar
  60. 60.
    K. L. Mittal, Surface contamination: An overview, in: Surface Contamination: Genesis, Detection and Control (K. L. Mittal, ed.), pp. 3–45, Plenum Press, New York (1979).Google Scholar
  61. 61.
    D. M. Mattox, Substrate preparation for thin film deposition—A survey, Thin Solid Films 124, 3–10(1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. L. Jellison
    • 1
  1. 1.Process Metallurgy, Division 1833Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations