Advertisement

Effect of Surface Contamination on the Performance of HVDC Insulators

  • David C. Jolly

Abstract

Contamination flashover, sometimes called pollution flashover, is a form of electrical insulation failure caused by conducting deposits on an insulator surface. If the contamination is sufficiently heavy, failure takes the form of a discharge growing along the surface until the terminals are bridged, at which time an electrical arc forms, and the insulation no longer supports its nominal voltage.

Keywords

Electrical Insulation Insulator Surface Power Apparatus High Voltage Engineer Flashover Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Nasser, A survey of the problem of insulator contamination in the United States and Canada, IEEE Conference Paper, Paper no. 70 CP 240-PWR (1970).Google Scholar
  2. 2.
    A. El-Sulaiman and M. I. Qureshi, Effect of contamination on the leakage current of inland desert insulators, IEEE Trans. Electrical Insulation EI-19, 332–339 (August, 1984).CrossRefGoogle Scholar
  3. 3.
    C. F. Sarkinen and J. T. Wiitala, Investigation of volcanic ash on transmission facilities in the Pacific Northwest, IEEE Trans. Power Apparatus & Systems PAS-100, 2278–2286 (May, 1981).CrossRefGoogle Scholar
  4. 4.
    D. A. Greimsmann, Mount St. Helens eruptions increase knowledge of volcanic ash effects on system reliability, Hi-Tension News (Ohio Brass Co., Mansfield, Ohio) 51, 4–11 (July-August, 1982).Google Scholar
  5. 5.
    S. S. Low and G. R. Elder, Experience dictates future HVDC insulator requirements, IEEE Trans. Electrical Insulation EI-16, 263–266 (June, 1981).CrossRefGoogle Scholar
  6. 6.
    L. O. Barthold, HVDC—now an important option, Transmission & Distribution, 28–32 (April, 1985).Google Scholar
  7. 7.
    HVDC inaugurated in Brazil, Transmission & Distribution, 8 (December, 1984).Google Scholar
  8. 8.
    J. T. Tyner, Heavyweight know-how builds intermountain HVDC line, Transmission & Distribution, 26–32 (June, 1985).Google Scholar
  9. 9.
    A. E. Vlastos and T. Sjokvist, Selected papers on insulator pollution and related topics, Kungliga Tekniska Hogskolan, Institutionen for Elektrisk Anlaggningsteknik, Stockholm (February, 1972).Google Scholar
  10. 10.
    E. Nasser, An annotated bibliography on the problem of insulator contamination of the electric energy system, Engineering Research Institute, Iowa State University, Special Report ISU-ERI-AMES-73220 (October, 1973).Google Scholar
  11. 11.
    IEEE Working Group on Insulator Contamination, Bibliography on high voltage insulator contamination, presented at IEEE Power Engineering Society Summer Meeting (July 11–22, 1977), Paper no. 77BL0100–8-PWR.Google Scholar
  12. 12.
    IEEE Committee Report, Application guide for insulators in a contaminated environment, paper presented at IEEE Summer Power Meeting (July 17–22, 1977), Paper no. F 77 639–8.Google Scholar
  13. 13.
    G. Anfossi, Behavior of insulators in the vicinity of the sea, Atti della Assoc. Electrotecn. Ital. 11, 326–334 (1907).Google Scholar
  14. 14.
    W. S. Murray, The log of the New Haven electrification, AIEE Trans. 27, 1615–1664 (December, 1908).Google Scholar
  15. 15.
    A. Austin, The high efficiency suspension insulator, AIEE Proc. 30, 1319–1344 (1911).Google Scholar
  16. 16.
    F. Obenaus, The influence of surface coating (dew, fog, salt, and dirt) on the flashover voltage of insulators, Hescho Mitteilungen (Hermsdorf-Schomburg-Isolatoren-Gesellschafi) 70, 1–37 (1933).Google Scholar
  17. 17.
    F. Obenaus, The flashover of contaminated insulators, ETZ 56, 369–370 (March, 1935).Google Scholar
  18. 18.
    W. Frischmann, Contamination flashover and arc root motion, Dtsch. Elektrotechnik 11, 290–295 (1957).Google Scholar
  19. 19.
    W. Frischmann, The importance of contamination factors for insulation flashover, Dtsch. Elektrotechnik 12, 166–171 (1958).Google Scholar
  20. 20.
    W. Frischmann, The importance of short circuit current capability for contamination flash-over testing, Dtsch. Elektrotechnik 12, 28–31 (1958).Google Scholar
  21. 21.
    W. Frischmann, The influence of level and duration of voltage on contamination flashover, Dtsch. Elektrotechnik 12, 52–55, (1958).Google Scholar
  22. 22.
    F. Obenaus, Contamination flashover and creepage length, Dtsch. Elektrotechnik 12, 135–137 (1958).Google Scholar
  23. 23.
    G. Neumarker, Contamination state and creepage path, Deutsche Akad. Berlin 1, 352–359 (1959).Google Scholar
  24. 24.
    F. Obenaus, Creepage flashover of insulators with contamination layers, Elektrizitatswirtschaft 59, 878–882 (December 20, 1960).Google Scholar
  25. 25.
    H. Boehme and F. Obenaus, Pollution flashover tests on insulators in the laboratory and in systems and the model concept of creepage-path flashover, Conférence Internationale des Grands Réseaux Electriques à Haute Tension (CIGRE), Paris (June 8–18, 1966), Paper no. 407.Google Scholar
  26. 26.
    F. Obenaus and H. Bohme, Laboratory and service tests with contaminated suspension insulators and the model concept of creepage flashover, Elektrie 20, 417–422 (1966).Google Scholar
  27. 27.
    R. Mailfert, L. Pargamin, and D. Riviere, Electrical reliability of DC line insulators, IEEE Trans. Electrical Insulation EI-16, 267–276 (June, 1981).CrossRefGoogle Scholar
  28. 28.
    J. E. Schroeder, Y. Zlotin, T. C. Cheng, C. T. Wu, and J. H. Dunlap, Design of a polysil DC insulator, IEEE Trans. Electrical Insulation EI-16, 235–241 (June, 1981).CrossRefGoogle Scholar
  29. 29.
    D. C. Jolly, A test method for determining the outdoor lifetime of polymer transmission line insulators, Conference Record of 1982 IEEE International Symposium on Electrical Insulation (June 7–9), 1982, Paper no. 82CH1780–6-EI, pp. 248–251.Google Scholar
  30. 30.
    D. C. Jolly, A quantitative method for determining the resistance of polymers to surface discharges, IEEE Trans. Electrical Insulation EI-17, 293–299 (August, 1982).CrossRefGoogle Scholar
  31. 31.
    E. A. Cherney and D. J. Stonkus, Non-ceramic insulators for contaminated environments, IEEE Trans. Power Apparatus & Systems PAS-100, 131–142 (January, 1981).CrossRefGoogle Scholar
  32. 32.
    IEEE Working Group on Non-Ceramic and Composite Insulators for Transmission Lines, Minimum test requirements for non-ceramic insulators, IEEE Trans. Power Apparatus & Systems PAS-100, 882–890 (February, 1981).CrossRefGoogle Scholar
  33. 33.
    K. Stimper and W. H. Middendorf, Mechanisms of deterioration of electrical insulation surfaces, IEEE Trans. Electrical Insulation EI-19, 314–320 (August, 1984).CrossRefGoogle Scholar
  34. 34.
    R. Schifani, Surface discharge effects on dielectric properties of epoxy resin, IEEE Trans. Electrical Insulation EI-18, 504–512 (September, 1983).CrossRefGoogle Scholar
  35. 35.
    F. A. M. Rizk, Analysis of dielectric recovery with reference to dry-zone arcs on polluted insulators, presented at IEEE Winter Power Meeting (January 31-February 5, 1971), Paper no. 71 CP 134-PWR.Google Scholar
  36. 36.
    A. Kaga, M. Sato, and H. Akagami, Reignition voltage and arc voltage on contaminated insulator surfaces, Jap. J. Appl. Phys., Part 123, 1094–1100 (August, 1984).CrossRefGoogle Scholar
  37. 37.
    F. Hirsch, H. Rheinbaben, and R. Sorms, Flashover of insulators under natural pollution and HVDC, IEEE Trans. Power Apparatus & Systems PAS-94, 45–50 (January, 1975).CrossRefGoogle Scholar
  38. 38.
    M. P. Sarma and W. Janischewskyj, Analysis of corona losses on dc transmission lines: Part ii—Bipolar lines, IEEE Trans. Power Apparatus & Systems PAS-88, 1476–1491 (October, 1969).CrossRefGoogle Scholar
  39. 39.
    M. P. Sarma and W. Janischewskyj, Analysis of corona losses on DC transmission lines: i—Unipolar lines, IEEE Trans. Power Apparatus & Systems PAS-88, 718–731 (May, 1969).CrossRefGoogle Scholar
  40. 40.
    H. Witt, Insulation levels and corona phenomena on HVDC transmission lines, Ph.D. Thesis, Chalmers Tekniska Hogskola, Sweden (October, 1960).Google Scholar
  41. 41.
    Y. Sunaga, Y. Amano, and T. Sugimoto, Electric field and ion current at the ground and voltage of charged objects under HVDC lines, IEEE Trans. Power Apparatus & Systems PAS-100, 2082–2092 (April, 1981).CrossRefGoogle Scholar
  42. 42.
    M. G. Comber and G. B. Johnson, HVDC field and ion effects research at Project UHV: Results of electric field and ion current measurements, IEEE Trans. Power Apparatus & Systems PAS-101, 1998–2006 (July, 1982).CrossRefGoogle Scholar
  43. 43.
    P. S. Maruvada, R. D. Dallaire, O. C. Elye, C. V. Thio, and J. S. Goodman, Environmental effects of the Nelson River HVDC transmission lines—RI, AN, electric field, induced voltage, and ion current distribution tests, IEEE Trans. Power Apparatus & Systems PAS-101, 951–959 (April, 1982).CrossRefGoogle Scholar
  44. 44.
    P. S. Maruvada, R. D. Dallaire, J. H. Bednarek, and W. H. Jones, Long-term statistical study of the corona electric field and ion current performance of a + / − 900 kV bipolar HVDC transmission line configuration, IEEE Trans. Power Apparatus & Systems PAS-103, 76–83 (January, 1984).CrossRefGoogle Scholar
  45. 45.
    S. A. Sebo, R. Caldecott, and D. G. Kasten, Model study of HVDC electric field effects, IEEE Trans. Power Apparatus & Systems PAS-101, 1743–1756 (June, 1982).CrossRefGoogle Scholar
  46. 46.
    B. Y. H. Liu and A. Kapadia, Combined field and diffusion charging of aerosol particles in the continuum region, J. Aerosol Sci. 9, 227–242 (1978).CrossRefGoogle Scholar
  47. 47.
    A. K. Gertsik, A. V. Korsuntser, and N. K. Nikolskii, The effect of fouling on insulators for HVDC overhead lines, Direct Current 3, 219–226 (December, 1957).Google Scholar
  48. 48.
    H. Witt, D.C. insulators, a comparison with A.C., Conférence Internationale des Grands Réseaux Electriques à Haute Tension (CIGRE), Paris (June 15–25, 1960), Paper no. 403.Google Scholar
  49. 49.
    A. Annestrand and A. Schei, A test procedure for artificial pollution tests on direct voltage, Direct Current 12, 1–8 (February, 1967).Google Scholar
  50. 50.
    H. Haerer, Insulators for high voltage direct current under contamination conditions, Ph.D. Thesis, University of Stuttgart, Federal Republic of Germany (July, 1971).Google Scholar
  51. 51.
    J. F. Hall and T. P. Mauldin, Wind tunnel studies of the insulator contamination process, IEEE Trans. Electrical Insulation EI-16, 180–188 (June, 1981).CrossRefGoogle Scholar
  52. 52.
    T. C. Cheng and C. T. Wu, Performance of HVDC insulators under the contaminated conditions, IEEE Trans. Electrical Insulation EI-15, 270–286 (June, 1980).CrossRefGoogle Scholar
  53. 53.
    T. C. Cheng, C. T. Wu, F. Zedan, G. R. Elder, S. S. Low, J. N. Rippey, and G. D. Rodriguez, EPRI-HVDC insulator studies: Part i, field test at the Sylmar HVDC converter station, IEEE Trans. Power Apparatus & Systems PAS-100, 902–909 (February, 1981).CrossRefGoogle Scholar
  54. 54.
    T. C. Cheng, C. T. Wu, J. N. Rippey, and F. M. Zedan, Pollution performance of DC insulators under operating conditions, IEEE Trans. Electrical Insulation EI-16, 154–164 (June, 1981).CrossRefGoogle Scholar
  55. 55.
    W. G. Thompson, The mechanism of the contamination of porcelain insulators, IEE Journal, Part II 91, 317–327 (1944).Google Scholar
  56. 56.
    R. G. Olsen, B.C. Furumasu, and D. P. Hartmann, Contamination mechanisms for HVDC insulators, paper presented at IEEE Winter Power Meeting (January 30-February 4, 1977), Paper no. A 77 035–9.Google Scholar
  57. 57.
    R. G. Olsen and J. Daffe, The effect of electric field modification and wind on the HVDC insulator contamination process, paper presented at IEEE Winter Power Meeting (January 29-February 3, 1978), Paper no. A 78 120–8.Google Scholar
  58. 58.
    R. G. Olsen, J. Daffe, and C. F. Sarkinen, On the origin, significance, and minimization of nonuniform contamination along HVDC insulator strings, IEEE Trans. Power Apparatus & Systems PAS-100, 971–980 (March, 1981).CrossRefGoogle Scholar
  59. 59.
    M. Alem and J. B. Laghari, A prediction of deposition of contaminants on insulator surface with and without grading rings, Conference Record of 1982 IEEE International Symposium on Electrical Insulation (June 7–9, 1982), Paper no. 82CH1780–6-EI, pp. 192–196.Google Scholar
  60. 60.
    M. N. Horenstein, Particle contamination of high voltage DC insulators, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (May, 1978).Google Scholar
  61. 61.
    M. N. Horenstein and J. R. Melcher, Particle contamination of high voltage DC insulators below corona threshold, IEEE Trans. Electrical Insulation EI-14, 297–305 (December, 1979).CrossRefGoogle Scholar
  62. 62.
    E. C. Salthouse, The effects of direct voltages on insulator surfaces, Ph.D. Thesis, Queen’s University, Belfast, Northern Ireland (November, 1960).Google Scholar
  63. 63.
    J. R. Laghari, private communication (July 12, 1982).Google Scholar
  64. 64.
    Y. Aoshima, T. Harada, and K. Kishi, DC voltage distribution characteristics on polluted insulator string, IEEE Trans. Power Apparatus & Systems PAS-100, 948–955 (March, 1981).CrossRefGoogle Scholar
  65. 65.
    A. Radun, Particle charging in a turbulent air stream, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (February, 1981).Google Scholar
  66. 66.
    A. V. Radun and J. R. Melcher, DC power line charging of macroscopic particles and associated electrical precipitation on insulators, IEEE Trans. Electrical Insulation EI-16, 165–179 (June, 1981).CrossRefGoogle Scholar
  67. 67.
    H. Bohme and H. Zeh, Contamination deposition by wind on insulators, Elektrie 21, 339–240 (July, 1967).Google Scholar
  68. 68.
    G. Karady, Effect of surface contamination on high voltage insulator performance, in: Surface Contamination: Genesis, Detection and Control (K. L. Mittal, ed.), pp. 945–965, Plenum Press, New York (1979).Google Scholar
  69. 69.
    H. H. Woodson and A. J. McElroy, Insulators with contaminated surfaces, part iii: modelling of dry zone formation, IEEE Trans. Power Apparatus & Systems PAS-89, 1868–1876 (November/December, 1970).CrossRefGoogle Scholar
  70. 70.
    J. H. Kim, Characterization of contaminated insulator flashover parameters and analysis of insulator wetting mechanisms, Ph.D. Thesis, University of Southern California, Los Angeles, California (June, 1975).Google Scholar
  71. 71.
    M. Leclerc, R. Bouchard, Y. Gervais, and D. Mukhedkar, Wetting processes on a contaminated insulator surface, IEEE Trans. Power Apparatus & Systems PAS-101, 1005–1011 (May, 1982).CrossRefGoogle Scholar
  72. 72.
    E. C. Salthouse, Initiation of dry bands on polluted insulation, Proc. IEE 115, 1707–1712 (November, 1968).Google Scholar
  73. 73.
    D. O. Lavelle, Thermal considerations in the surface behavior of insulators, Ph.D. Thesis, Queen’s University, Belfast, Northern Ireland (October, 1970).Google Scholar
  74. 74.
    J. O. Loberg and E. C. Salthouse, Dry-band growth on polluted insulation, IEEE Trans. Electrical Insulation EI-6, 136–141 (September, 1971).CrossRefGoogle Scholar
  75. 75.
    Yu. N. Shumilov and V. A. Aksenov, Surface layer electrophysical processes on flashover of fouled insulators, Electric Technology U.S.S.R. 8–18 (1983).Google Scholar
  76. 76.
    A. Saad and R. Tobazeon, Surface conduction and losses of an insulator wetted by a liquid dielectric, IEEE Trans. Electrical Insulation EI-19, 193–199 (June, 1984).CrossRefGoogle Scholar
  77. 77.
    M. Nishida, N. Yoshimura, and F. Noto, Process of dry belt formation on surface of organic insulation materials in tracking breakdown, Elect. Eng. Japan (USA) 103, 26–37 (1983).CrossRefGoogle Scholar
  78. 78.
    E. Nasser, Some physical properties of electrical discharges on contaminated surfaces, IEEE Trans. Power Apparatus & Systems PAS-87, 957–963 (April, 1968).CrossRefGoogle Scholar
  79. 79.
    L. Alston and S. Zoledziowski, Growth of discharges on polluted insulation, Proc. IEE 110, 1260–1266 (July, 1963).Google Scholar
  80. 80.
    C. H. W. Clark, P. Dey, W. A. McNeill, J. S. Forrest, K. W. Huddart, D. M. Cherry, S. Zoledziowski, L. I. Alston, B. F. Hampton, C. H. A. Ely, and P. J. Lambeth, Discussion of flashover of polluted insulation, Proc. IEE 111, 1589–1592 (September, 1964).Google Scholar
  81. 81.
    B. Hampton, Flashover mechanism of polluted insulation, Proc. IEE 111, 985–990 (May, 1964).Google Scholar
  82. 82.
    H. Nacke, Stability of contamination layer discharges and flashover theory, ETZ-A 87, 577–585 (August 5, 1966).Google Scholar
  83. 83.
    S. Hesketh, General criterion for the prediction of pollution flashover, Proc. IEE 114, 531–532 (April, 1967).Google Scholar
  84. 84.
    S. Hesketh, The propagation of arcs over a water surface, Proceedings of the 8th International Conference on Ionization Phenomena in Gases (1967), Paper no. 3.2.11.6, p. 255.Google Scholar
  85. 85.
    A. Rumeli, The mechanism of flashover of polluted insulation, Ph.D. Thesis, Univ. of Strathclyde, Glasgow, Scotland (1967).Google Scholar
  86. 86.
    S. Zoledziowski, Flashover of polluted insulation, Proceedings of the 8th International Conference on Ionization Phenomena in Gases (1967), Paper no. 3.2.11.5, p. 254.Google Scholar
  87. 87.
    R. Wilkins, Flashover voltage of high voltage insulators with uniform surface pollution films, Proc. IEE 116, 457–465 (March, 1969).Google Scholar
  88. 88.
    A. Baghdadi, The mechanism of flashover of polluted insulation, Ph.D. Thesis, The Victoria University of Manchester, Manchester Institute of Technology, England (May, 1970).Google Scholar
  89. 89.
    F. A. M. Rizk, Application of dimensional analysis to flashover characteristics of polluted insulators, Proc. IEE 117, 2257–2260 (December, 1970).Google Scholar
  90. 90.
    H. Woodson and A. J. McElroy, Insulators with contaminated surfaces, part ii: modelling of discharge mechanisms, IEEE Trans. Power Apparatus & Systems PAS-89, 1858–1867 (November/December, 1970).CrossRefGoogle Scholar
  91. 91.
    P. Claverie, Predetermination of the behavior of polluted insulators, IEEE Trans. Power Apparatus & Systems PAS-90, 1902–1908 (July/August, 1971).CrossRefGoogle Scholar
  92. 92.
    D. C. Jolly, Physical processes in the flashover of insulators with contaminated surfaces, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (May, 1971).Google Scholar
  93. 93.
    Katsuo Isaka, Basic research on the breakdown phenomena upon the polluted surface of the insulator, Ph.D. Thesis, University of Tokyo, Japan (March, 1971).Google Scholar
  94. 94.
    F. A. M. Rizk, A criterion for AC flashover of polluted insulators, presented at IEEE Winter Power Meeting (January 31-February 5, 1971), Paper no. 71 CP 135-PWR.Google Scholar
  95. 95.
    R. Wilkins and A. Baghdadi, Arc propagation along an electrolyte surface, Proc. IEE 118, 1886–1892 (December, 1971).Google Scholar
  96. 96.
    W. Bundschuh, The insulation strength of contaminated insulators stressed with pulsed direct current, Tech. Mitt. AEG-Telefunken 62, 334–337 (1972).Google Scholar
  97. 97.
    D. Goulsbra, The behaviour of electrical discharges on polluted insulation, Ph.D. Thesis, The Victoria University of Manchester, Manchester Institute of Technology, England (April, 1972).Google Scholar
  98. 98.
    B. F. Hampton, Arc propagation along an electrolyte surface, Proc. IEE 119, 1228 (August, 1972).Google Scholar
  99. 99.
    D. C. Jolly, Contamination flashover, part i: Theoretical aspects, IEEE Trans. Power Apparatus & Systems PAS-91, 2437–2442 (November/December, 1972).CrossRefGoogle Scholar
  100. 100.
    E. Nasser, Contamination flashover of outdoor insulation, ETZ-A 93, 321–325 (1972).Google Scholar
  101. 101.
    C. Huraux and A. Rahal, Analysis of the instability of a discharge on the surface of an insulator starting with the one-dimensional model of Obenaus, C.R. Acad. Sci. Paris (Series B) 278, 823–826 (1974).Google Scholar
  102. 102.
    T. C. Cheng and C. T. Wu, EPRI-HVDC insulator studies: Part iii, theories on flashover processes, paper presented at IEEE Summer Power Meeting (July 15–20, 1979), Paper no. A 79 537–2.Google Scholar
  103. 103.
    L. Higginbottom, S. Zoledziowski, and J. H. Calderwood, Flashover along a conducting surface, 3rd International Conference on Dielectric Materials, Measurements and Applications, University of Aston, Birmingham, England (September 10–13, 1979), pp. 291–293.Google Scholar
  104. 104.
    A. M. Rahal and C. Huraux, Flashover mechanism of high voltage insulators, IEEE Trans. Power Apparatus & Systems PAS-98, 2223–2231 (November/December, 1979).CrossRefGoogle Scholar
  105. 105.
    J. Gers, S. Zoledziowski, and J. H. Calderwood, Criteria for discharge elongation along a conductive surface, Proceedings International Symposium on Pollution Performance of Insulators and Surge Diverters, Indian Institute of Technology, Madras, India (February 26–27, 1981), Paper no. 1.05.Google Scholar
  106. 106.
    A. M. Hizal and Y. Demir Rumeli, Analytical estimation of flashover performances of polluted insulators, Proceedings International Symposium on Pollution Performance of Insulators and Surge Diverters, Indian Institute of Technology, Madras, India (February 26–27, 1981), Paper no. 1.02.Google Scholar
  107. 107.
    M. Tantawy, and M. El-Maghraby Y. Abed, Digital computation of flashover voltage over polluted insulators under several constraints, Proceedings International Symposium on Pollution Performance of Insulators and Surge Diverters, Indian Institute of Technology, Madras, India (February 26–27, 1981), Paper no. 1.03.Google Scholar
  108. 108.
    T. C. Cheng, C. Y. Wu, and H. Nour, DC interfacial breakdown on contaminated electrolytic surfaces, IEEE Trans. Electrical Insulation EI-19, 536–542 (December, 1984).CrossRefGoogle Scholar
  109. 109.
    A. J. McElroy, Flashover mechanisms of insulators with contaminated surfaces, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (June, 1969).Google Scholar
  110. 110.
    T. C. Cheng, Mechanism of flashover of contaminated insulators, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (May, 1974).Google Scholar
  111. 111.
    J. Melcher and D. C. Jolly, Contamination Flashover Mechanisms of DC Transmission Line Insulators, U.S. Dept. of Energy, Final Report, Contract E(49–18)-2068 (January, 1978).Google Scholar
  112. 112.
    R. Wilkins, Mechanisms of failure of high-voltage insulation with surface contamination, Ph.D. Thesis, The Victoria University of Manchester, Manchester Institute of Technology, England (January, 1968).Google Scholar
  113. 113.
    H. Nacke, Arc resistance and leakage current resistance of insulating materials, Ph.D. Thesis, Technical University of Berlin, Federal Republic of Germany (May, 1962).Google Scholar
  114. 114.
    H. P. Mercure and M. G. Drouet, Dynamic measurements of the current distribution in the foot of an arc propagating along the surface of an electrolyte, IEEE Trans. Power Apparatus & Systems PAS-101, 725–736 (March, 1982).CrossRefGoogle Scholar
  115. 115.
    D. J. King, Measurements of the properties of arcs near electrolyte surfaces, B.S. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (June, 1975).Google Scholar
  116. 116.
    V. Cohen, Anode and cathode phenomena of arc burning to electrolytes, M.S. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (September, 1979).Google Scholar
  117. 117.
    E. J. Los, Time constants of low current arcs near flat surfaces, M.S. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (February, 1974).Google Scholar
  118. 118.
    E. J. Los and D. C. Jolly, Static and dynamic properties of arcs near plane surfaces, Z. Physik B 20, 3–11 (1975).CrossRefGoogle Scholar
  119. 119.
    D. C. Jolly and S. T. Chu, Surface electrical breakdown of tin oxide coated glass, J. Appl. Phys. 50, 6196–6199 (October, 1979).CrossRefGoogle Scholar
  120. 120.
    I. Kimoto, J. Fujumura, and K. Naito, Performance of insulators for direct current transmission line under polluted conditions, IEEE Trans. Power Apparatus & Systems PAS-92, 943–949 (May/June, 1973).CrossRefGoogle Scholar
  121. 121.
    T. Kawamura, M. Ishii, M. Akbar, and K. Nagai, Pressure dependence of DC breakdown of contaminated insulators, IEEE Trans. Electrical Insulation EI-17, 39–45 (February, 1982).CrossRefGoogle Scholar
  122. 122.
    D. C. Jolly and C. D. Poole, Flashover of contaminated insulators with cylindrical symmetry under DC conditions. IEEE Trans. Electrical Insulation EI-14, 77–84 (April, 1979).CrossRefGoogle Scholar
  123. 123.
    Y. Nakajima, T. Seta, K. Nagai, H. Horie, and K. Naito, Performance of contaminated insulators energized by DC voltage, Conférence Internationale des Grands Réseaux Electriques à Haute Tension (CIGRE), Paris (August 21–29, 1974), Paper no. 33–07.Google Scholar
  124. 124.
    S. Zoledziowski, Time to flashover characteristics of polluted insulation, IEEE Trans. Power Apparatus & Systems PAS-87, 1397–1404 (June, 1968).CrossRefGoogle Scholar
  125. 125.
    M. Rea, Arc dynamics on insulating surfaces partly covered with conducting deposits, L’Energia Elettrica 44, 145–154 (1967).Google Scholar
  126. 126.
    D. C. Jolly, T. C. Cheng, and D. M. Otten, Dynamic theory of discharge growth over contaminated insulator surfaces, paper presented at IEEE Winter Power Metting (January 27-February 1, 1974), Paper no. C 74 068–3.Google Scholar
  127. 127.
    A. El-Arabaty, A. Nosseir, E. Nasser, A. El-Sarky, and S. El-Debeiky, Measurement and analysis of dynamic discharge propagation on h.v. polluted insulators, 3rd International Symposium on High Voltage Engineering, Milan, Italy (August 28–31, 1979), Paper no. 54.01.Google Scholar
  128. 128.
    L. Higginbotton, S. Zoledziowski, and J. H. Calderwood, The dynamic model of flashover along a conductive surface, 3rd International Symposium on High Voltage Engineering, Milan, Italy (August 28–31, 1979), Paper no. 54.03.Google Scholar
  129. 129.
    D. C. Jolly, Contamination flashover and insulator design, J. Franklin Institute 294, 483–500 (December, 1972).CrossRefGoogle Scholar
  130. 130.
    F. D. A. Boylett, Electric discharges on water surfaces, Electronics Letters 5, 47–48 (February 6, 1969).CrossRefGoogle Scholar
  131. 131.
    F. D. A. Boylett and I. G. Maclean, The propagation of electric discharge across the surface of an electrolyte, Proc. Roy. Soc. A324, 469–489 (1971).Google Scholar
  132. 132.
    T. Matsumoto, M. Ishii, and T. Kawamura, Optoelectronic measurement of partial arcs on a contaminated surface, IEEE Trans. Electrical Insulation EI-19, 543–549 (December, 1984).CrossRefGoogle Scholar
  133. 133.
    C. H. A. Ely and W. J. Roberts, Flashover of polluted h.v. insulators under switching surges, Proc. IEE 115, 443 (March, 1968).Google Scholar
  134. 134.
    H. Matsuo, Y. Yunoki, T. Oshige, and N. Mita, Impulse discharge on contaminated surface, Elect. Eng. Japan 89, 26–34 (1969).Google Scholar
  135. 135.
    W. Mosch and E. Lemke, Switching surge flashover of insulators under polluted conditions, Proceedings International Symposium on Pollution Performance of Insulators and Surge Diverters, Indian Institute of Technology, Madras, India (February 26–27, 1981), Paper no. 1.06.Google Scholar
  136. 136.
    A. H. Qureshi, A. Rumeli, and M. Hizal, Flashover along a water column under impulse voltages, Proceedings International Symposium on Pollution Performance of Insulators and Surge Diverters, Indian Institute of Technology, Madras, India (February 26–27, 1981), Paper no. 1.01.Google Scholar
  137. 137.
    J. Labadie, Study of the validity of the electrical model of flashover of contaminated high voltage insulators, Ph.D. Thesis, l’Université Paul Sabatier, Toulouse, France (May, 1977).Google Scholar
  138. 138.
    D. C. Jolly, Contamination flashover, part ii: Flat plate model tests, IEEE Trans. Power Apparatus & Systems PAS-91, 2443–2451 (November/December, 1972).CrossRefGoogle Scholar
  139. 139.
    I. M. Crabtree, K. J. Mackey, K. Kito, N. Naito, A. Wanatabe, and T. Irie, Studies on electrolytic corrosion of hardware of DC line insulators, IEEE Trans. Power Apparatus & Systems PAS-104, 645–654 (March, 1985).CrossRefGoogle Scholar
  140. 140.
    D. C. Jolly and D. L. Murray, Spatially periodic instability occurring in moving boundary electrophoresis experiments, J. Electroanal. Chem. 160, 103–116 (1984).CrossRefGoogle Scholar
  141. 141.
    G. N. Alexandrov and R. S. Burchanov, Flashover voltage of lightly contaminated suspension insulator strings at reduced air density, Elektrie 21, 370–371 (1967).Google Scholar
  142. 142.
    V. I. Bergman and O. I. Kolobova, Some results of an investigation of the dielectric strength of contaminated line insulation in reduced air-pressure conditions, Soviet Elect. Eng. (USA) 54, 54–56 (1983).Google Scholar
  143. 143.
    M. Ishii, M. Akbar, and T. Kawamura, Effect of ambient temperature on the performance of contaminated DC insulators, IEEE Trans. Electrical Insulation EI-19, 129–134 (April, 1984).CrossRefGoogle Scholar
  144. 144.
    L. Pargamin and S. Tartier, A comparison of contamination test methods for DC line insulators, IEEE Trans. Electrical Insulation EI-16, 224–229 (June, 1981).CrossRefGoogle Scholar
  145. 145.
    H. Rasokat, The influence of load characteristics of test equipment for the direct current withstand voltage characteristics of contaminated insulators, ETZ-A 90, 691–692 (1969).Google Scholar
  146. 146.
    H. Rasokat, Loading characteristics of test voltage sources for AC and DC, and their influence on the withstand voltage characteristics of contaminated insulators, Ph.D. Thesis, Technical University of Berlin, Federal Republic of Germany (December, 1970).Google Scholar
  147. 147.
    T. M. Ishii, M. Akbar, and K. Nagai Kawamura, Stabilized DC source for testing of polluted insulators, 3rd International Symposium on High Voltage Engineering, Milan, Italy (August 38–31, 1979), Paper no. 43–09.Google Scholar
  148. 148.
    K. J. Lloyd and M. G. Comber, HVDC contaminated insulator tests—Leakage currents and their influence on the power supply, paper presented at IEEE Summer Power Meeting (July 15–20, 1979), Paper no. A 79 530–7.Google Scholar
  149. 149.
    Y. Beausejour and F. A. M. Rizk, Feedback-controlled cascade rectifier source for HV testing of contaminated DC insulators, IEEE Trans. Power Apparatus & Systems PAS-100, 3525–3534 (July, 1981).CrossRefGoogle Scholar
  150. 150.
    K. J. Lloyd, Testing contaminated insulators at Project UHV for voltage levels of the future, IEEE Trans. Electrical Insulation EI-16, 220–223 (June, 1981).CrossRefGoogle Scholar
  151. 151.
    R. S. Geus and R. F. Stevens, High voltage DC test program of Bonneville Power Administration, IEEE Trans. Power Apparatus & Systems PAS-82, 1054–1061 (December, 1963).Google Scholar
  152. 152.
    M. G. Poland, W. M. Scarborough, H. L. Hill, and P. E. Renner, BPA’s extra high voltage DC tests: i—Contaminated insulators, IEEE Trans. Power Apparatus & Systems PAS-86, 1146–1152 (October, 1967).CrossRefGoogle Scholar
  153. 153.
    B. Macchiaroli and M. Rea, Flashover voltage of artificially contaminated surfaces, Proc. IEE 118, 271–274 (January, 1971).Google Scholar
  154. 154.
    T. Seta, N. Arai, and T. Udo, Natural pollution test of insulators with DC high voltage, IEEE Trans. Power Apparatus & Systems PAS-93, 878–883 (May/June, 1974).CrossRefGoogle Scholar
  155. 155.
    R. Sorms, The flashover behaviour of naturally contaminated DC transmission line insulators, Ph.D. Thesis, Technischen Universität Berlin (1974).Google Scholar
  156. 156.
    H. L. Hill, A. Capon, O. Ratz, P. Renner, and W. D. Schmidt, Transmission Line Reference Book HVDC to + / − 600 kV, Electric Power Research Institute, Palo Alto, California (1976).Google Scholar
  157. 157.
    T. C. Cheng and C. T. Wu, The performance of insulators with different surface pollutants under HVDC conditions, 3rd International Conference on Dielectric Materials, Measurements and Applications, University of Aston, Birmingham, England (September 10–13, 1979).Google Scholar
  158. 158.
    C. T. Wu, Flashover mechanisms of contaminated HVDC insulation, Ph.D. Thesis, University of Southern California, Los Angeles, California (June, 1979).Google Scholar
  159. 159.
    T. C. Cheng, C. T. Wu, Y. B. Kim, and S. Yokayama, EPRI-HVDC insulator studies: Part ii, laboratory simulation studies, IEEE Trans. Power Apparatus & Systems PAS-100, 910–920 (February, 1981).CrossRefGoogle Scholar
  160. 160.
    M. G. Comber and R. J. Nigbor, Performance of contaminated insulators tested from 200 to 1000 kV DC, IEEE Trans. Electrical Insulation EI-16, 230–234 (June, 1981).CrossRefGoogle Scholar
  161. 161.
    T. Fujimura, K. Naito, and Y. Suzuki, DC flashover voltage characteristics of contaminated insulators, IEEE Trans. Electrical Insulation EI-16, 189–198 (June, 1981).CrossRefGoogle Scholar
  162. 162.
    T. Seta, K. Nagai, K. Naito, and Y. Hasegawa, Studies on the performance of contaminated insulators energized with DC voltage, IEEE Trans. Power Apparatus & Systems PAS-100, 518–527 (February, 1981).CrossRefGoogle Scholar
  163. 163.
    G. Peyregne, A. M. Rahal, and C. Huraux, Flashover of a liquid conducting film, part 1: Flashover voltage, IEEE Trans. Electrical Insulation EI-17, 10–14 (February, 1982).CrossRefGoogle Scholar
  164. 164.
    G. Peyregne, A. M. Rahal, and C. Huraux, Flashover of a liquid conducting film, part 2: Time to flashover-mechanisms, IEEE Trans. Electrical Insulation EI-17, 15–19 (February, 1982).CrossRefGoogle Scholar
  165. 165.
    J. J. Taylor, Insulators to withstand airborne deposits, AIEE Trans. 67, 1436–1441 (1948).Google Scholar
  166. 166.
    H. Bocker, Proposal for a DC insulator, ETZ-A 90, 690 (1969).Google Scholar
  167. 167.
    R. W. Sanders and D. R. Holmes, Conducting coatings for high-voltage insulator stabilization, Nature 195, 170–171 (1962).CrossRefGoogle Scholar
  168. 168.
    M. J. Billings and R. Wilkins, Considerations of the suppression of insulator flashover by resistive surface films, Proc. IEE 113, 1649–1653 (October, 1966).Google Scholar
  169. 169.
    J. E. Conner and A. D. Lantz, The insulator contamination problem as influenced by silicone surface coatings, AIEE Trans. Part III 77, 1101–1112 (December, 1958).CrossRefGoogle Scholar
  170. 170.
    J. E. Toms and A. B. Suttie, Insulator surface treatments, Electrical Review, 412–415 (September 17, 1965).Google Scholar
  171. 171.
    P. J. Lambeth, J. S. T. Looms, A. Stalewski, and W. G. Todd, Surface coatings for h.v. insulators in polluted areas, Proc. IEE 113, 861–869 (May, 1966).Google Scholar
  172. 172.
    R. M. Radwan and G. M. El-Salam, Effect of silicon grease on the DC electrical characteristic of polluted insulators, 3rd International Symposium on High Voltage Engineering, Milan, Italy (August 28–31, 1979), Paper no. 54.04.Google Scholar
  173. 173.
    T. C. Cheng, D. C. Jolly, and D. J. King, Surface flashover of water repellant insulators under moist conditions, IEEE Trans. Electrical Insulation EI-12, 208–213 (June, 1977).CrossRefGoogle Scholar
  174. 174.
    Y. Yamano, S. Kobayashi, and T. Takahashi, Reduction of surface charge-induced electric field enhancement and increase in AC flashover voltage, IEEE Trans. Electrical Insulation EI-20, 529–536 (June, 1985).CrossRefGoogle Scholar
  175. 175.
    T. C. Cheng, G. Wilson, and D. C. Jolly, High-Voltage Electrical Insulator Adapted to Prevent Flashover, U.S. Patent 3,963,858 (June 15, 1976).Google Scholar
  176. 176.
    D. A. Swift, Flashover across the surface of an electrolyte: Some methods of arresting arc propagation, 3rd International Symposium on High Voltage Engineering, Milan, Italy (August 28–31, 1979), Paper no. 54.05.Google Scholar
  177. 177.
    D. C. Jolly and D. J. King, High-Voltage Electrical Insulator Having Magnetic Elements to Prevent Flashover, U.S. Patent 4,010,316 (March 1, 1977).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • David C. Jolly
    • 1
  1. 1.BrooklineUSA

Personalised recommendations