Particulate Surface Contamination and Device Failures

  • Joseph R. Monkowski


An interesting situation exists in the microelectronics field with regard to particulate contamination. A large number of vendors have as their primary purpose the supplying of clean rooms and clean-room accessories to the semiconductor industry. Integrated circuit manufacturers expend a substantial amount of both time and money in order to maintain a production facility as free as possible of particulate contamination. In fact, the initial capital investment for the clean room is from several hundred to more than one thousand dollars per square foot.(1, 2) Furthermore, chemical companies are now making special efforts to remove insoluble particulate contamination from their electronic-grade chemicals.(3-9) However, in comparison to this overwhelming attention to the control of particulate contamination and the overall attitude that this control is entirely necessary, very little has been reported on the exact role of particulate contamination in device failures.


Silicon Wafer Epitaxial Film Clean Room Dielectric Breakdown Device Failure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. G. O’Neill, Clean room efficiency: A combination of design and operation, Semiconductor International 3(11), 49–62 (1980).Google Scholar
  2. 2.
    VLSI Facilities Overview, ICE Corporation Publication 16–1781-02, Figure 7337C (1985).Google Scholar
  3. 3.
    D. LaFeuille, D. Roche, and E. M. Juleff, Purity of chemicals for semiconductor processing, Solid State Technol.18(1), 43–48 (1975).Google Scholar
  4. 4.
    E. M. Juleff, W. J. McCleod, E. A. Hulse, and S. Fawcett, Advances in contamination control of processing chemicals in VLSI, Solid State Technol. 25(9), 82–86 (1982).Google Scholar
  5. 5.
    A. Weiss, Particulate filtration of chemicals, gases, and photoresist, Semiconductor International 5(7), 55–64(1982).Google Scholar
  6. 6.
    C. M. Juleff, Verifying purity of chemicals, Electron. Prod. Methods Equip. 4(1), 34–38 (1975).Google Scholar
  7. 7.
    J. T. Przybytek and K. L. Calabrese, Measuring low level particle counts in solvents, Microcontamination 3(6), 51–54 (1985).Google Scholar
  8. 8.
    P. Burggraaf, Applied wet chemical microfiltration, Semiconductor International 8(3), 86–89 (1985).Google Scholar
  9. 9.
    D. L. Tolliver, N. Davenport, and L. R. Abts, The detection of microcontaminants in semiconductor process fluids using an acoustic technology, Solid State Technol. 25(9), 116–123 (1982).Google Scholar
  10. 10.
    D. Angel, P. H. Johnson, and M. B. Vye, Automatic defect inspection of chromium-on-glass photolithographic masks, Semiconductor International 1(1), 100–109 (1978).Google Scholar
  11. 11.
    P. S. Burggraaf, The value of photomask inspection, Semiconductor International 3(2), 33–46 (1980).Google Scholar
  12. 12.
    W. Kern, Characterization of localized defects in dielectric films for electron devices, Solid State Technol. 17(3), 35–42 (1974).Google Scholar
  13. 13.
    S. Gunawardena, U. Kaempf, B. Tullis, and J. Vietor, SMIF and its impact on cleanroom automation, Microcontamination 3(9), 55–62, 108 (1985).Google Scholar
  14. 14.
    L. Berenbaum, The effect of submicron particulate contamination on the properties of thin dielectric films, Abstract #63, 147th Meeting of the Electrochemical Society, Toronto, Canada (1975).Google Scholar
  15. 15.
    J. R. Monkowski and R. T. Zahour, Failure mechanism in MOS gates resulting from particulate contamination, in: Proceedings of the IEEE Reliability Physics Symposium (1982), pp. 244–248.Google Scholar
  16. 16.
    E. S. Anolick, Area and electrode effects on time dependent breakdowns through Si3N4 and SiO2 double layers, Abstract #60, 147th Meeting of the Electrochemical Society, Toronto, Canada (1975).Google Scholar
  17. 17.
    P. S. Burggraaf, Airborne-particle monitoring know-how, Semiconductor International 5(7), 35–50 (1982).Google Scholar
  18. 18.
    C. M. Davis, G. Bergeron, R. LaCourse, and G. Trombley, HEPA filters as a contamination source, J. Environ. Sci. 24, 27–35 (1981).Google Scholar
  19. 19.
    K. H. Stokes, Class 10—Can we do it?, Microcontamination 1(4), 12–14 (1984).Google Scholar
  20. 20.
    R. P. Donovan, B. R. Locke, D. S. Ensor, and C. M. Osburn, The case for incorporating condensation nuclei counters into a standard for air quality, Microcontamination 2(6), 39–44 (1984).Google Scholar
  21. 21.
    J. Burnett, Class 1 cleanroom specifications, Microcontaminations 3(6), 21–24 (1985).Google Scholar
  22. 22.
    J. McDonough, Status and update report: IES recommended practice program and Federal Standard 209B revision, Microcontamination 3(9), 47–52, 104–106 (1985).Google Scholar
  23. 23.
    J. A. DeNicola and R. D. Mastropiero, Design and maintenance of high purity gas handling systems, Solid State Technol 15(2), 51–54 (1972).Google Scholar
  24. 24.
    H. Boyd, Gases for semiconductor production, Microelectronic Manufact. Testing, 80–83 (May, 1981).Google Scholar
  25. 25.
    R. L. Duffin, Process gas filtration in integrated circuit production, Microcontamination 1(4), 35–38 (1984).Google Scholar
  26. 26.
    T. G. O’Neill, Ultra-pure water update, Semiconductor International 4(7), 55–69 (1981).Google Scholar
  27. 27.
    M. Corn, The adhesion of solid particles to solid surfaces, J. Air Pollution Control Assoc. 2, 567 (1961).Google Scholar
  28. 28.
    P. S. Burggraaf, Wafer cleaning, Semiconductor International 4(7), 71–100 (1981).Google Scholar
  29. 29.
    S. Bhattacharya and K. L. Mittal, Mechanics of removing glass particulates from a solid surface, Surface Technol. 7, 413–425 (1978).CrossRefGoogle Scholar
  30. 30.
    J. M. Duffalo and J. R. Monkowski, Particulate contamination and device performance, Solid State Technol. 27(3), 109–114 (1984).Google Scholar
  31. 31.
    H. R. Bolin, Process defects and effects on MOSFET gate reliability, in: Proceedings of the IEEE Reliability Physics Symposium (1980), pp. 252–254.Google Scholar
  32. 32.
    H. H. Willard, L. L. Merritt, Jr., and J. A. Dean, Instrumental Methods of Analysis, 5th Ed., pp. 350–389, D. Van Nostrand Co., New York (1974).Google Scholar
  33. 33.
    J. Reednick, A unique approach to atomic spectroscopy, Am. Lab. 11(3), 53–61 (1979).Google Scholar
  34. 34.
    H. H. Willard, L. L. Merritt, Jr., and J. A. Dean, Instrumental Methods of Analysis, 5th Ed., pp. 522–560, D. Van Nostrand Co., New York (1974).Google Scholar
  35. 35.
    H. H. Willard, L. L. Merritt, Jr., and J. A. Dean, Instrumental Methods of Analysis, 5th Ed., pp. 150–188, D. Van Nostrand Co., New York (1974).Google Scholar
  36. 36.
    H. H. Willard, L. L. Merritt, Jr., and J. A. Dean, Instrumental Methods of Analysis, 5th Ed., pp. 328–331, D. Van Nostrand Co., New York (1974).Google Scholar
  37. 37.
    A.S.T.M. F-312–80 Specification.Google Scholar
  38. 38a.
    J. R. Monkowski, The role of chlorine in silicon oxidation, Solid State Technol. 22(7), 58–61;Google Scholar
  39. 38b.
    J. R. Monkowski, The role of chlorine in silicon oxidation, Solid State Technol. ibid. 22(8), 113–119(1979).Google Scholar
  40. 39.
    J. Steinberg, Dual HCl thin gate oxidation process, J. Electrochem. Soc. 129, 1778–1782 (1982).CrossRefGoogle Scholar
  41. 40.
    C. Hashimoto, S. Muramoto, N. Shiono, and O. Nakajima, A method of forming thin and highly reliable gate oxides, J. Electrochem. Soc. 127, 129–135 (1980).CrossRefGoogle Scholar
  42. 41.
    W. A. Brown and T. I. Kamins, An analysis of LPCVD system parameters for polysilicon, silicon nitride and silicon dioxide deposition, Solid State Technol. 22(7), 51–57 (1979).Google Scholar
  43. 42.
    W. T. Stacy, D. F. Allison, and T. C. Wu, The role of metallic impurities in the formation of haze defects, in: Semiconductor Silicon 1981, pp. 344–353, The Electrochemical Soc, Inc., Pennington, N.J. (1981).Google Scholar
  44. 43.
    W. T. Stacy, D. F. Allison, and T. C. Wu, Metal decorated defects in heat-treated silicon wafers, J. Electrochem. Soc. 129, 1128–1133 (1982).CrossRefGoogle Scholar
  45. 44.
    T. Baginski, J. R. Monkowski, and I. S. T. Tsong, The role of chlorine in the gettering of metallic impurities from silicon, Abstract #399, 160th Meeting of the Electrochemical Society, Denver Colo. (1981).Google Scholar
  46. 45.
    T. Baginski, private communication (1983).Google Scholar
  47. 46.
    See, for example, R. A. Colclaser, Microelectronics: Processing and Device Design, pp. 22–52, John Wiley and Sons, New York (1980).Google Scholar
  48. 47.
    A. B. Glaser and G. E. Subak-Sharpe, Integrated Circuit Engineering, pp. 751–753, Addison-Wesley Publishing Co., Reading, Mass. (1977).Google Scholar
  49. 48.
    M. Martin and H. Williams, Optical scanning of silicon wafers for surface contaminants, Electro-opt. Syst. Des. 12(9), 45–49 (1980).Google Scholar
  50. 49.
    M. L. Hammond, Silicon epitaxy, Solid State Technol. 21(11), 68–75 (1978).Google Scholar
  51. 50.
    P. Burggraaf, High resistivity epi may solve MOS problems, Semiconductor International 3(4), 71–75 (1980).Google Scholar
  52. 51.
    G. R. Srinivasan, Silicon epitaxy for high performance integrated circuits, Solid State Technol. 24(11), 101–110(1981).Google Scholar
  53. 52.
    J. R. Monkowski, Gettering processes for defect control, Solid State Technol. 24(7), 44–51 (1981).Google Scholar
  54. 53.
    G. B. Larrabee and J. A. Keenan, Neutron activation analysis of epitaxial silicon, J. Electrochem. Soc. 118, 1351–1355 (1971).CrossRefGoogle Scholar
  55. 54.
    G. A. Rozgonyi, R. P. Deysher, and C. W. Pearce, The identification, annihilation, and suppression of nucleation sites responsible for silicon epitaxial stacking faults, J. Electrochem. Soc. 123, 1910–1915 (1976).CrossRefGoogle Scholar
  56. 55.
    C. W. Pearce and R. G. McMahon, Role of metallic contamination in the formation of “saucer” pit defects in epitaxial silicon, J. Vac. Sci. Technol. 14, 40–43 (1977).CrossRefGoogle Scholar
  57. 56.
    M. C. Chen and V. J. Silvestri, Pre- and post-epitaxial gettering of oxidation and epitaxial stacking faults in silicon, J. Electrochem. Soc. 128, 389–395 (1981).CrossRefGoogle Scholar
  58. 57.
    R. E. Logar and J. O. Borland, Silicon epitaxial processing techniques for ultra-low defect densities, Solid State Technol. 28(6), 133–136 (1985).Google Scholar
  59. 58.
    C. R. Barrett and R. C. Smith, Failure modes and reliability of dynamic RAMS, paper presented at the International Electronic Devices Meeting, Washington, D.C. (1976).Google Scholar
  60. 59.
    D. L. Crook, Method of determining reliability screens for time dependent dielectric breakdown, in: Proceedings of the IEEE Reliability Physics Symposium, (1979), pp. 1–7.Google Scholar
  61. 60.
    C. M. Osburn and D. W. Ormond, Dielectric breakdown in silicon dioxide films on silicon, J. Electrochem Soc. 119, 591–602 (1972).CrossRefGoogle Scholar
  62. 61.
    A. K. M. Zakzouk, Time dependent MOS gate oxide defects using liquid crystals, J. Electrochem. Soc. 127, 932–936 (1980).CrossRefGoogle Scholar
  63. 62.
    A. K. M. Zakzouk, The dependence of the SiO2 defect density on both the applied electric field and the oxide thickness, J. Electrochem. Soc. 126, 1771–1779 (1979).CrossRefGoogle Scholar
  64. 63.
    R. A. Williams and M. M. Beguwala, Reliability concerns for small geometry MOSFETs, Solid State Technol. 24(3), 65–71 (1981).Google Scholar
  65. 64.
    E. S. Anolick and G. R. Nelson, Low field time dependent dielectric integrity, in: Proceedings of the IEEE Reliability Physics Symposium (1979), pp. 8–12.Google Scholar
  66. 65.
    A. K. M. Zakzouk, General model for defect formation in silicon dioxide, IEE Proc. 127, 230–234 (1980).Google Scholar
  67. 66.
    S. P. Li, S. Prussin, and J. Maserjian, Model for MOS field-time-dependent breakdown, in: Proceedings of the IEEE Reliability Physics Symposium (1978), pp. 132–136.Google Scholar
  68. 67.
    P. Solomon, Breakdown in silicon oxide—A review, J. Vac. Sci. Technol. 14, 1122–1130 (1977).CrossRefGoogle Scholar
  69. 68.
    T. H. DiStefano, Barrier inhomogeneities on a Si-SiO2 interface by scanning internal photoemission, Appl. Phys. Lett. 19, 280–282 (1971).CrossRefGoogle Scholar
  70. 69.
    T. H. DiStefano, Dielectric breakdown induced by sodium in MOS structures, J. Appl. Phys. 44, 527–528 (1973).CrossRefGoogle Scholar
  71. 70.
    R. Williams and M. H. Woods, Laser-scanning photoemission measurements of the silicon-silicon dioxide interface, J. Appl. Phys. 43, 4142–4147 (1972).CrossRefGoogle Scholar
  72. 71.
    J. M. Keen, Nondestructive optical technique for electrically testing insulated-gate integrated circuits, Electron. Lett. 7, 432–433 (1971).CrossRefGoogle Scholar
  73. 72.
    A. G. Revesz and H. A. Shaeffer, The mechanism of oxygen diffusion in vitreous SiO2, J. Electrochem. Soc. 129, 357–361 (1982).CrossRefGoogle Scholar
  74. 73.
    J. P. Stagg and M. R. Boudry, Sodium passivation in Al-SiO2-Si structures containing chlorine, J. Appl. Phys. 52, 885–899 (1981).CrossRefGoogle Scholar
  75. 74.
    P. F. Schmidt and C. W. Pearce, A neutron activation analysis study of the sources of transition group metal contamination in the silicon device manufacturing process, J. Electrochem. Soc. 128, 630–637 (1981).CrossRefGoogle Scholar
  76. 75.
    J. R. Davis, A. Rohatgi, P. Rai-Choudhury, P. Blais, and R. H. Hopkins, Characterization of the effects of metallic impurities on silicon solar cell performance, in: Proceedings of the IEEE Photovoltaic Specialists Conference (1978), pp. 490–495.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Joseph R. Monkowski
    • 1
  1. 1.MRISan DiegoUSA

Personalised recommendations