Characterization of Surface Contaminants by Luminescence Using Ultraviolet Excitation

  • Tuan Vo-Dinh


Surface detection and characterization of organic contaminants have recently received considerable interest.(1) This is due to the increasing awareness that contamination of skin and other surfaces by organic pollutants is a serious problem in many industries.(2) Organic compounds on surfaces can be monitored by a variety of analytical techniques such as photoacoustic, Raman, multi-reflection infrared, and luminescence spectroscopies. Among these spectroscopic tools, luminescence spectroscopy, which generally uses ultraviolet (UV) radiation for excitation, is the most sensitive method of detection for most organic compounds, especially for materials containing polycyclic aromatic hydrocarbons (PAH). Many PAH compounds are present in various chemicals, environmental samples, and coal tar materials, as well as in many oils and greases used in industry. These PAH compounds are also produced by incomplete combustion of organic substances in many industrial and residential activities. Since most PAH compounds absorb UV radiation and many of them are strongly luminescent, the luminescence technique provides an extremely useful tool for detecting surface contamination by these materials.(3) This chapter reviews the basic methodology, instrumentation, and applications of the luminescence technique using UV-radiation excitation to detect surface contaminants.


Surface Detection Polynuclear Aromatic Hydrocarbon Excitation Radiation Threshold Limit Value Polycyclic Aromatic Hydrocar Compound 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. Mittal, ed., Surface Contamination: Genesis, Detection and Control, Vols. 1 and 2, Plenum Press, New York (1979).Google Scholar
  2. 2.
    T. Vo-Dinh and A. R. Hawthorne, Monitoring instrumentation, in: Proceedings of the DOEOHER Workshop on Monitoring and Dosimetry, CONF-8403150, pp. 43–55, National Technical Information Service, Springfield, Va. (1984).Google Scholar
  3. 3.
    T. Vo-Dinh, Luminescence spectroscopy, in Analytical Measurements and Instrumentation for Process and Pollution Control (P. N. Cheremisinoff and H. J. Perlis, eds.), pp. 47–80, Ann Arbor Science, Ann Arbor, Mich. (1981).Google Scholar
  4. 4.
    J. D. Winefordner, T. C. O’Haver, and S. G. Schulman, Luminescence Spectrometry in Analytical Chemistry. Wiley-Interscience, New York (1972).Google Scholar
  5. 5.
    T. Vo-Dinh, in: Synchronous Excitation Spectroscopy, Modern Fluorescence Spectroscopy, Vol. 4 (E. L. Wehry, ed.), pp. 167–191, Plenum Press, New York (1981).Google Scholar
  6. 6.
    P. Kubelka and F. Munk, Z. Tech. Phys. 12, 59 (1931).Google Scholar
  7. 7.
    R. A. Zweidinger and J. D. Winefordner, Anal. Chem. 42, 639 (1970).CrossRefGoogle Scholar
  8. 8.
    J. Goldman, J. Chromatog. 78, 7 (1972).CrossRefGoogle Scholar
  9. 9.
    W. M. Baird, Int. J. Cancer 22, 292 (1978).CrossRefGoogle Scholar
  10. 10.
    E. Cavalieri and M. Calvin, Photochem. Photobiol. 14, 641 (1971).CrossRefGoogle Scholar
  11. 11.
    W. Heller, Strahlentherapie 81, 529 (1950).Google Scholar
  12. 12.
    G. M. Blackburn and P. E. Taussig, Biochem. J. 149, 289 (1975).Google Scholar
  13. 13..
    Threshold Limit Values for Chemical Substances and Physical Agents in the Workroom Environment, Amer. Conf. Government Ind. Hyg. (1983).Google Scholar
  14. 14.
    R. R. Keenan and S. B. Cole, Am. Ind. Hyg. Assoc. J. 43, 473 (1982).CrossRefGoogle Scholar
  15. 15.
    T. Vo-Dinh and R. B. Gammage, Am. Ind. Hyg. Assoc. J. 42, 112 (1981).CrossRefGoogle Scholar
  16. 16.
    J. D. Ingle, Jr., and S. R. Crouch, Anal. Chem. 44, 785 (1972).CrossRefGoogle Scholar
  17. 17.
    T. Vo-Dinh and R. B. Gammage, in: Chemical Hazards in the Workplace—Measurement and Control (G. Choudhary, ed.), ACS Symposium Series No. 149, pp. 270–281, American Chemical Society, Washington, D.C. (1982).Google Scholar
  18. 18.
    The U.S. Department of Energy has given approval for Environmental Systems Corporation (ESC) to acquire exclusive rights to manufacture and distribute the luminoscope; Environmental Systems Corporation, Knoxville, Tennessee 37912 (1985). Further information on the commercial availability of the luminoscope should be requested from Environmental Systems Corporation, 200 Tech Center Drive, Knoxville, TN 37912.Google Scholar
  19. 19.
    D. D. Schuresko, Anal. Chem. 52, 311 (1980).CrossRefGoogle Scholar
  20. 20.
    G. A. Capelle and L. A. Franks, Appl. Opt. 18, 3579 (1979).CrossRefGoogle Scholar
  21. 21.
    R. A. O’Neil, L. Buja-Bijunas, and D. M. Rayner, Appl. Opt. 19, 863 (1980).CrossRefGoogle Scholar
  22. 22.
    J. E. Davis, Residue Review 75, 33 (1980).Google Scholar
  23. 23.
    D. P. Morgan, J. L. Hetzler, E. F. Slach, and L. I. Lin, Arch. Environ. Contam. Toxicol. 6, 159 (1973).CrossRefGoogle Scholar
  24. 24.
    R. A. Fenske, J. T. Leffingwell, and R. C. Spear, Paper presented at the 185th National Meeting of the American Chemical Society, Seattle, Wash. (March 20–25, 1983).Google Scholar
  25. 25.
    T. Vo-Dinh, R. B. Gammage, and G. D. Miller, in: Proceedings of the American Industrial Hygiene Conference, Philadelphia, Pa. (May 22–27, 1983).Google Scholar
  26. 26.
    R. W. Weeks, Jr., B. J. Dean, and S. K. Yasuda, Anal. Chem. 48, 2227 (1976).CrossRefGoogle Scholar
  27. 27.
    T. Forster, Discussion Faraday Soc. 27, 7 (1959).CrossRefGoogle Scholar
  28. 28.
    E. M. Smith and P. L. Levins, in: Polynuclear Aromatic Hydrocarbons (A. Bjorseth and A. Dennis, eds.), p. 973, Battelle Press, Columbus, Ohio (1980).Google Scholar
  29. 29.
    L. D. Johnson, R. E. Luce, and R. G. Merrill, in: Polynuclear Aromatic Hydrocarbons (M. Cooke and A. J. Dennis, eds.), p. 119, Battelle Press, Columbus, Ohio (1980).Google Scholar
  30. 30.
    T. Vo-Dinh and A. White, Anal Chem. 58, 1128 (1986).CrossRefGoogle Scholar
  31. 31.
    T. Vo-Dinh and J. D. Winefordner, Appl. Spectrosc. Rev. 13, 261 (1977).CrossRefGoogle Scholar
  32. 32a.
    R. T. Parker, R. S. Freedlander, and R. B. Dunlap, Anal. Chem. Acta. 119, 189 (1980);CrossRefGoogle Scholar
  33. 32b.
    R. T. Parker, R. S. Freedlander, and R. B. Dunlap, Anal. Chem. Acta. ibid. 120, 1 (1980).CrossRefGoogle Scholar
  34. 33.
    T. Vo-Dinh, Room Temperature Phosphorimetry for Chemical Analysis, Wiley-Interscience, New York (1984).Google Scholar
  35. 34.
    T. Vo-Dinh and J. R. Hooyman, Anal. Chem. 51, 9115 (1979).CrossRefGoogle Scholar
  36. 35.
    T. Vo-Dinh and P. R. Martinez, Anal. Chim. Acta 125, 313 (1981).CrossRefGoogle Scholar
  37. 36.
    T. Vo-Dinh, R. B. Gammage, and P. R. Martinez, Anal. Chim. Acta 118, 313 (1980).CrossRefGoogle Scholar
  38. 37.
    T. Vo-Dinh, R. B. Gammage, and P. R. Martinez, Anal. Chem. 55, 253 (1981).CrossRefGoogle Scholar
  39. 38.
    T. Vo-Dinh, in: Identification and Analysis of Organic Pollutants in Air (L. H. Keith, ed.), Chapter 16, pp. 257–270, Butterworth Publishers, Woburn, Mass. (1983).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Tuan Vo-Dinh
    • 1
  1. 1.Advanced Monitoring Development Group, Health and Safety Research DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations