Techniques for Cleaning Liquid Surfaces

  • John C. Scott


When we speak of “clean liquid surfaces” our meaning is often subtly different from considerations of “clean solid surfaces.” In most solid surface cases, what we require is a surface that is “pure”, i.e., composed solely of molecules of the desired substance.(1) Although there is a corresponding need for “pure” liquid surfaces in basic research, where delicate measurements of surface tension are related to intermolecular forces, what we require more often is a liquid surface whose fluid mechanics is simply specified or well defined.


Surface Tension Liquid Surface Fluid Mechanic Bulk Liquid Chromic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. Mittal, Surface contamination: An overview, in: Surface Contamination: Genesis, Detection and Control (K. L. Mittal, ed.), Vol. 1, pp. 3–45, Plenum Press, New York (1979).Google Scholar
  2. 2.
    J. T. Davies and J. P. Driscoll, Eddies at free surfaces, simulated by pulses of water, Ind. Eng. Chem., Fundam. 13, 105–109 (1974).CrossRefGoogle Scholar
  3. 3.
    K. J. Mysels and A. T. Florence, Techniques and criteria in the purification of aqueous surfaces, in: Clean Surfaces (G. Goldfinger, ed.), pp. 227–268, Marcel Dekker, New York (1970).Google Scholar
  4. 4.
    N. K. Adam, The Physics and Chemistry of Surfaces, 3rd Ed., Dover Publications, Inc., New York (1968).Google Scholar
  5. 5.
    J. C. Scott, The historical development of theories of wave-calming using oil, Hist. Technol. 3, 163–186 (1968).Google Scholar
  6. 6.
    B. Franklin, Of the stilling of waves by means of oil, Phil. Trans. 64, 445–460 (1774).CrossRefGoogle Scholar
  7. 7.
    L. D. Landau and E. M. Lifshitz, The effect of adsorbed films on the motion of a liquid, in: Fluid Mechanics, pp. 241–244, Pergamon Press, (1959).Google Scholar
  8. 8.
    E. Palm, Nonlinear thermal convection, Ann. Rev. Fluid Mech. 7, 39–61 (1975).CrossRefGoogle Scholar
  9. 9.
    C. A. Miller, Wave motion of low-tension interfaces with electrical double layers, J. Fluid Mech. 55, 641–657 (1972).CrossRefGoogle Scholar
  10. 10.
    G. L. Gaines, Insoluble Monolayers at Liquid-Gas Interfaces, Wiley-Interscience, New York (1966).Google Scholar
  11. 11.
    J. C. Scott and R. W. B. Stephens, Use of moire fringes in investigating surface wave propagation in monolayers of soluble polymers, J. Acoust. Soc. Amer. 52, 871–878 (1972).CrossRefGoogle Scholar
  12. 12.
    J. C. Scott, The effect of organic films on water surface motions, in: Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes (E. C. Monahan and G. Mac Niocaill, eds.), 159–165, D. Reidel Publishing Co. (1986).Google Scholar
  13. 13.
    G. van der Mensbrugghe, Sur la tension superficielle des liquides considerée au point de vue de certains mouvements observés à leur surface, Mém. couronnes et Mém. des Savants étrangers, de l’Acad. Roy. des Sci., Lett., et des Beaux-Arts de Belgique 34, 3–67 (1869).Google Scholar
  14. 14.
    L. E. Scriven and C. V. Sternling, The Marangoni effects, Nature 187, 186–188 (1960).CrossRefGoogle Scholar
  15. 15.
    C. H. Giles, Franklin’s teaspoon of oil. Studies in the early history of surface chemistry, Chem.Ind.1969, 1616–1624 (1969). [See also C. H. Giles, Historical aspects of surfactant adsorption at liquid surfaces, in: Solution Behavior of Surfactants: Theoretical and Applied Aspects (K. L. Mittal and E. J. Fendler, eds.), Vol. 1, pp. 113–122, Plenum Press, New York (1982).]Google Scholar
  16. 16.
    E. H. Lucassen-Reynders and J. Lucassen, Properties of capillary waves, Adv. Colloid Interface Sci. 2, 347–395 (1969).CrossRefGoogle Scholar
  17. 17.
    A. Pockels, Surface tension, Nature 43, 437–439 (1981).Google Scholar
  18. 18.
    Lord Rayleigh, Measurements of the amount of oil necessary in order to check the motions of camphor upon water, Proc. Roy. Soc., 47, 364–367 (1890).Google Scholar
  19. 19.
    J. C. Scott, Techniques for characterizing surface cleanliness of liquids, in: Surface Contamination—Genesis, Detection, and Control, (K. L. Mittal, ed.), Vol. 1, pp. 477–497, Plenum Press, New York (1979).Google Scholar
  20. 20.
    Lord Rayleigh, On the tension of water surfaces, clean and contaminated, investigated by the method of ripples, Phil. Mag. 300, 386–400 (1890).Google Scholar
  21. 21.
    J. C. Scott, The preparation of water for surface-clean fluid mechanics, J. Fluid Mech. 69, 339–351 (1975).CrossRefGoogle Scholar
  22. 22.
    Anon., Device to measure surfactant concentration, Anal. Chem. 46, 799A–800A (1974).Google Scholar
  23. 23.
    J. T. Davies and R. W. Vose, On the damping of capillary waves by surface films, Proc. Roy. Soc. A286, 218–234 (1965).Google Scholar
  24. 24.
    Lord Rayleigh, Foam, Proc. Roy. Inst. 103, 85–97 (1890).Google Scholar
  25. 25.
    J. C. Scott, Flow beneath a stagnant film on water: The Reynolds ridge, J. Fluid Mech. 116, 283–296 (1982).CrossRefGoogle Scholar
  26. 26.
    G. A. Askar’yan, E. K. Karlova, R. P. Petrov, and V. Studenov, J.E.T.P. Lett. 18, 389–390 (1973).Google Scholar
  27. 27.
    I. Langmuir and V.J. Schaefer, The effect of dissolved salts on insoluble monolayers, J. Am. Chem. Soc. 59, 2400 (1937).CrossRefGoogle Scholar
  28. 28.
    J. C. Scott, The role of salt in whitecap persistence, Deep-Sea Res. 22, 653–657 (1975).Google Scholar
  29. 29.
    J. D. Robinson and S. Hartland, The effect of surface active agents on coalescence, Tenside 9, 301–308 (1972).Google Scholar
  30. 30.
    J. C. Scott, The influence of surface-active contamination on the initiation of wind waves, J. Fluid Mech. 56, 591–606 (1972).CrossRefGoogle Scholar
  31. 31.
    J. C. Scott, The preparation of clean water surfaces for fluid mechanics, in: Surface Contamination: Genesis, Detection, and Control (K. L. Mittal, ed.), Vol. 1, pp. 477–497, Plenum Press, New York (1979).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • John C. Scott
    • 1
  1. 1.Fluid Mechanics Research InstituteUniversity of EssexColchester, EssexUK

Personalised recommendations