Application of Pellicles in Clean Surface Technology

  • Pedro Lilienfeld


The protection of optically critical surfaces against the effects of particle contamination by means of transparent barriers has been a long-established approach applied to a broad range of cases, ranging from combustion monitoring(1) to space-borne(2) sensing. Such protective transparent barriers can take the form of cleanable windows, as in the case of the rather prosaic automotive windshield/wiper, or of flow screens, typified by the clean-air curtains incorporated in several types of gas(1) and aerosol(3) monitoring instruments.


Standoff Distance Optical Data Storage Particle Contamination Illumination Wavelength Integrate Circuit Fabrication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Tomic, New Concepts of Optical Windows in Process Streams, GCA Final Report on U.S. Environmental Protection Agency Contract No. 68–02-3168 Work Assignment No. 109 (April, 1984), 25 pp. Available from GCA/Technology Div., Bedford, Mass.Google Scholar
  2. 2.
    S.A. Hoenig, Electrostatic dust protection for optical elements, Appl. Optics27(3), 565–569 (1982).CrossRefGoogle Scholar
  3. 3.
    P. Lilienfeld, High concentration dust mass monitor, Particulate Sci. Technol.7, 91–100 (1983).CrossRefGoogle Scholar
  4. 4.
    K. Jain, Laser applications in semiconductor microlithography, Lasers and Applications2(9), 49–56 (1983).Google Scholar
  5. 5.
    G. Pircher, Submicron lithography, in: Proceedings of 9th International Vacuum Conference and 5th International Conference on Solid Surfaces, Madrid (Sept. 26–Oct. 1, 1983), pp. 427–444.Google Scholar
  6. 6.
    D. J. Elliott, Integrated Circuit Fabrication Technology, McGraw-Hill Book Company, New York (1982).Google Scholar
  7. 7.
    J. Roussel, Step and repeat wafer imaging, SPIE Proceedings on Developments in Semiconductor Microlithography III135, 30–35 (1978).Google Scholar
  8. 8.
    G. L. Resor and A. C. Tobey, The role of direct step-on-the-wafer in microlithography strategy for the 80’s, Solid State Technol.22(9), 101–108 (1979).Google Scholar
  9. 9.
    V. Miller and H. L. Stove, Submicron optical lithography: I-Line wafer stepper and photoresist technology, Solid State Technol.28(1), 127–136 (1985).CrossRefGoogle Scholar
  10. 10.
    H. B. Lovering, Optics in Microelectronics, Kodak Publication G-45 (1975), pp. 66–71.Google Scholar
  11. 11.
    T. L. Hershey, Pellicles on wafer steppers with lenticular optics, Solid State Technol.26(7), 89–94 (1983).Google Scholar
  12. 12.
    A. C. Tobey, Semiconductor microlithography through the eighties, Microelectronic Manufact. Testing8(4), 19–20 (1985).Google Scholar
  13. 13.
    D. J. Elliott, Integrated Circuit Mask Technology, McGraw-Hill Book Company, New York (1985).Google Scholar
  14. 14.
    R. M. Shoho, Fabrication of microelectronics reticles, Solid State Technol.22(2), 75–79 (1979).Google Scholar
  15. 15.
    J. J. Greed, Photomask and reticle making for VLSI, Microelectronic Manufact. Testing6(7), 22–24 (1983).Google Scholar
  16. 16.
    P. H. Singer, Photomask and reticle defect detection, Semiconductor International8(4), 66–73 (1985).Google Scholar
  17. 17.
    C. M. Osburn, Aerosol control in semiconductor manufacturing, paper presented at the First International Aerosol Conference, Minneapolis, Minn. (September 17–21, 1984). Extended abstract in: Aerosols—Science, Technology and Industrial Applications of Airborne Particles (B. Y. H. Liu, D. Y. H. Pui, and H. J. Fissan, eds.), p. 673, Elsevier, New York (1984).Google Scholar
  18. 18.
    P. S. Burggraaf, Reduction reticle trends: Emphasizing 5 ×, Semiconductor International 7(8), 58–63 (1984).Google Scholar
  19. 19.
    G. Abraham and G. Bergasse, Projection Printing System with an Improved Mask Configuration, U.S. Patent 04063812 (December 20, 1977).Google Scholar
  20. 20.
    V. Shea and W. J. Wojcik, Pellicle Cover for Projection Printing System, U.S. Patent 04131363 (December 26, 1978).Google Scholar
  21. 21.
    W. H. Steel, Etude des effets combinés des aberrations et d’une obturation centrale de la pupille sur le contraste des images optiques, Revue Optique32(1), 4–26 (1953).Google Scholar
  22. 22.
    W. H. Steel, The defocused image of sinusoidal gratings, Optica Acta3(2), 65–74 (1956).CrossRefGoogle Scholar
  23. 23.
    H. H. Hopkins, The frequency response of a defocused system, Proc. Royal Soc. A231, 91–103 (1955).CrossRefGoogle Scholar
  24. 24.
    A. Flamholz, An analysis of pellicle parameters for step-and-repeat projection, Proceedings of SPIE on Optical Microlithography III470, 138–146 (1984).Google Scholar
  25. 25.
    R. Hershel, Pellicle protection of IC masks, Semiconductor International4(8), 97–106 (1981).Google Scholar
  26. 26.
    R. Winn and R. Turnager, Pellicles—an industry overview, Solid State Technol.25(6), 41–43 (1982).Google Scholar
  27. 27.
    R. Iscoff, Pellicles—a means to increase die yield, Semiconductor International5(9), 95–108 (1982).Google Scholar
  28. 28.
    T. A. Brunner, C. P. Ausschnitt, and D. L. Duly, Pellicle mask protection for 1:1 projection lithography, Solid State Technol.26(5), 135–143 (1983).Google Scholar
  29. 29.
    A. Rangappan and C. Kao, Yield improvement with pellicalised masks in projection printing technology, Proceedings of SPIE on Optical Microlithography—Technology for the Mid-1980s334, 52–57 (1982).Google Scholar
  30. 30.
    R. Iscoff, Pellicles 1985: An update, Semiconductor International8(4), 110–115 (1985).Google Scholar
  31. 31.
    P. S. Burggraaf, Wafer steppers: Considering the issues, Semiconductor International5(4), 57–78 (1982).Google Scholar
  32. 32.
    R. Turnage and R. Winn, Attaching pellicles to photomasks in a production environment, Microelectronic Manufact. Testing6(1), 31–32 (1983).Google Scholar
  33. 33.
    I. E. Ward and D. L. Duly, A broadband, deep UV pellicle for 1:1 scanning projection and step and repeat lithography, Proceedings of SPIE on Optical Microlithography III470, 147–156 (1984).Google Scholar
  34. 34.
    J. Lent and S. Swayne, The Implementation of a Pellicle Mask Protection System into an Established Production Area, Kodak Publication G-136 (1982), pp. 93–99.Google Scholar
  35. 35.
    J. Lent, Pellicle mask protection for 1:1 projection aligners, Motorola Technical Developments2, 22–23 (1982).Google Scholar
  36. 36.
    K. W. Edmark and G. Quackenbos, An American assessment of Japanese contamination-control technology, Microcontamination2(5), 47–53, 125 (1984).Google Scholar
  37. 37.
    R. L. Ruddell, Resist and mask trends, Semiconductor International7(7), 104–108 (1984).Google Scholar
  38. 38.
    I. E. Ward and P. M. Papoojian, Pellicle Compositions and Pellicles Thereof for Projection Printing, U.S. Patent 04499231 (February 12, 1985).Google Scholar
  39. 39.
    I. E. Ward, Polyvinyl Butyrate Pellicle Compositions and Pellicles Thereof for Projection Printing, U.S. Patent 04482591 (November 13, 1984).Google Scholar
  40. 40.
    I. E. Ward, Pellicle Compositions and Pellicles Thereof for Projection Printing, U.S. Patent 04476172 (October 9, 1984).Google Scholar
  41. 41.
    Micropel Products Bulletin, EKC Technology, Inc., Hayward, Calif.Google Scholar
  42. 42.
    Advanced Semiconductor Products Data Sheet No. 109, Santa Cruz, Calif. (June 9, 1982).Google Scholar
  43. 43.
    D. L. Duly, H. Windischmann, and W. D. Buckley, Method of Fabricating a Pellicle Cover for Projection Printing System, U.S. Patent 4465759 (August 14, 1984).Google Scholar
  44. 44.
    P. R. Carafe and J. R. Kraycir, Photomask pellicle support ring design, IBM Technical Disclosure Bulletin27(1B), 769 (1984).Google Scholar
  45. 45.
    D. W. Fisher, V. Shea, P. Trongo, and W. Wojcik, Transparent ring for low angle pellicle inspection, IBM Technical Disclosure Bulletin23(2), 526 (July, 1980).Google Scholar
  46. 46.
    C. M. Walwyn and D. E. Bohonos, Pellicle Mounting Fixture, U.S. Patent 04443098 (April 17, 1984).Google Scholar
  47. 47.
    A. B. Patel and E. Wojciekfsky, Mounting of mask with pellicle, IBM Technical Disclosure Bulletin26(8), 4036–4037 (1984).Google Scholar
  48. 48.
    Y. Yen, Dustfree Packaging Container and Method, U.S. Patent 04470508 (September 11, 1984).Google Scholar
  49. 49.
    Tau Laboratories, Inc., Products Bulletin (1982), Riddings, Derby, England.Google Scholar
  50. 50.
    A. K. M. Miller and R. Mason, Container for Masks and Pellicles, U.S. Patent 4511038 (April 16, 1985).Google Scholar
  51. 51.
    J. W. Conant, Pellicle Ring Removal Method and Tool, U.S. Patent 04255216 (March 10, 1981).Google Scholar
  52. 52.
    P. Chipman, Qualifying reduction reticles, Semiconductor International7(8), 68–73 (1984).Google Scholar
  53. 53.
    P. S. Burggraaf, 1 x Mask and reticle technology, Semiconductor International6(3), 40–45 (1983).Google Scholar
  54. 54.
    R. A. Simpson and D. E. Davis, Detecting submicron pattern defects on optical photomasks using an enhanced EL-3 electron-beam lithography tool, Proceedings of SPIE on Optical Microlithography—Technology for the Mid-1980s334, 230–237 (1982).Google Scholar
  55. 55.
    G. Quackenbos, S. Broude, and E. Chase, Automatic detection and quantification of contaminants on reticles for semiconductor microlithography, Proceedings of SPIE on Integrated Circuit Metrology342, 35–43 (1982).Google Scholar
  56. 56.
    M. Shiba, M. Koizumi, and T. Katsuta, Automatic inspection of contaminants on reticles, Proceedings of SPIE on Optical Microlithography III470, 233–239 (1984).Google Scholar
  57. 57.
    A. Tanimoto and K. Imamura, Reticle contamination monitor for a wafer stepper, Proceedings of SPIE on Optical Microlithography III470, 242–249 (1984).Google Scholar
  58. 58.
    K. L. Mittal, ed., Surface Contamination: Genesis, Detection and Control, Vols. 1 and 2, Plenum Press, New York (1979).Google Scholar
  59. 59.
    P. Lilienfeld, Optical detection of particle contamination on surfaces—a Review, Aerosol Sci. Technol.5(2), 145–165 (1986).CrossRefGoogle Scholar
  60. 60.
    L. McVay and P. Lilienfeld, Automatic Detector for Microscopic Dust on Large-Area Optically Unpolished Surfaces, U.S. Patent No. 4402607 (September 6, 1983).Google Scholar
  61. 61.
    E. T. Chase, S. V. Broude, and G. S. Quackenbos, Surface Inspection Apparatus, U.S. Serial No. 682794 patent pending (filed December 18, 1984).Google Scholar
  62. 62.
    R. V. Asselt and G. Brooks, Technique for Inspecting Photomasks with Pellicles Attached, Kodak Publication G-136 (1982), pp. 158–162.Google Scholar
  63. 63.
    C. P. Ausschnitt, T. A. Brunner, and S. C. Yang, Application of wafer probe techniques to the evaluation of projection printers, Proceedings of SPIE on Optical Microlithography—Technology for the Mid-1980s334, 17–25 (1982).Google Scholar
  64. 64.
    G. Bouwhuis and J. J. M. Braat, Video disk player optics, Appl. Optics17(13), 1993–2000 (1978).CrossRefGoogle Scholar
  65. 65.
    G. C. Kenney, D. Y. K. Low, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. G. Wagner, and F. Zernike, An optical disk replaces 25 mag tapes, IEEE Spectrum16(2), 33–38 (1979).Google Scholar
  66. 66.
    D. C. Kowalski, D. J. Curry, L. T. Klinger, and G. Knight, Multichannel digital optical disk memory system, Optical Eng.22(4), 464–472 (1983).Google Scholar
  67. 67.
    R. McFarlane, G. Blom, A. Chan, S. Chandra, E. Frankfort, G. Kenney, D. Low, and J. Nadan, Digital optical recorders at Mbit/s data rate, Optical Eng.21(5), 913–922 (1982).Google Scholar
  68. 68.
    S. Miyaoka, Digital audio is compact and rugged, IEEE Spectrum21(3), 35–39 (1984).Google Scholar
  69. 69.
    J. Hecht, Optical memory for personal computers, Lasers and Applications4(8), 71–76 (1985).Google Scholar
  70. 70.
    H. Brody, Materials for optical storage: A state-of-the-art survey, Laser Focus17(8), 47–52 (1981).Google Scholar
  71. 71.
    M. Hartmann, J. Braat, and B. Jacobs, Erasable magneto-optical recording media, IEEE Trans. Magn.20(5), 1013–1018 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Pedro Lilienfeld
    • 1
  1. 1.MIE, Inc.BedfordUSA

Personalised recommendations