Skip to main content

Surface Contamination and Biomaterials

  • Chapter
Treatise on Clean Surface Technology

Abstract

Synthetic materials for medical applications (biomaterials) are widely used in the United States today. The types of materials used to fabricate medical implant devices include plastics, elastomers, fibers, metals, carbons, ceramics, glasses, and composites. The extent of the use of synthetics in medicine is emphasized by the numbers of implants itemized in Table 1. Although high success rates are generally realized with these implants, there is much room for improvement. It is reasonable to surmise that an enhanced understanding of the surface of these implants, the region directly interfacing with the body, can lead to improvements in performance of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. L. Mittal, ed., Surface Contamination: Genesis, Detection and Control, Plenum Press, New York (1979).

    Google Scholar 

  2. B. D. Ratner, J. J. Rosen, A. S. Hoffman, and L. H. Scharpen, An ESCA study of surface contaminants on glass substrates for cell adhesion, in: Surface Contamination: Genesis, Detection and Control (K. L. Mittal, ed.), Vol. 2, pp. 669–686, Plenum Press, New York (1979).

    Google Scholar 

  3. E. Nyilas, E. L. Kupski, P. Burnett, and R. M. Haag, Surface microstructural factors and the blood compatibility of a silicone rubber, J. Biomed. Mater. Res. 4, 369–432 (1970).

    Article  CAS  Google Scholar 

  4. B. D. Ratner, Analysis of surface contaminants on intraocular lenses, Arch. Ophthalmol. 101, 1434–1438 (1983).

    Article  CAS  Google Scholar 

  5. D. W. Meltzer, Gamma ray sterilization and its effect on intraocular lenses, Am. Intra-Ocular Implant Soc. J. 7, 126–129 (1981).

    CAS  Google Scholar 

  6. R. E. Baier, A. E. Meyer, C. K. Akers, J. R. Natiella, M. Meenaghan, and J. M. Carter, Degradative effects of conventional steam sterilization on biomaterial surfaces, Biomaterials 3, 241–245 (1982).

    Article  CAS  Google Scholar 

  7. P. Didisheim, M. K. Dewanjee, D. N. Fass, V. Fuster, K. E. Holley, M. P. Kaye, P. E. Zollman, and M. V. Tirrell, Blood Compatibility of Circulatory Assist Devices, Annual Report, June 30, 1981, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md., 20014, PB 82 1295 37.

    Google Scholar 

  8. D. W. Meltzer, R. C. Drews, and A. S. Hajek, Millipore filters in ophthalmic surgery: A caution concerning their use, Am. Intra-Ocular Implant Soc. J. 7, 143–146 (1981).

    CAS  Google Scholar 

  9. R. E. Baier, V. A. Depalma, A. Furuse, V. L. Gott, G. W. Kammlott, T. Lucas, P. N. Sawyer, S. Srinivasan, and B. Stanczewski, Thromboresistance of glass after glow discharge treatment in argon, J. Biomed. Mater. Res. 9, 547–560 (1975).

    Article  CAS  Google Scholar 

  10. J. R. Vig, UV/ozone cleaning of surfaces: A review, in: Surface Contamination: Genesis, Detection and Control (K. L. Mittal, ed.), Vol. 1, pp. 235–253, Plenum Press, New York (1979).

    Chapter  Google Scholar 

  11. L. Smith, D. Hill, J. Hibbs, S. W. Kim, J. Andrade, and D. Lyman, Glow discharge surface treatment for improved cellular adhesion, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 16, 186–190 (1975).

    CAS  Google Scholar 

  12. C. Rappaport, Some aspects of the growth of mammalian cells on glass surfaces, in: The Chemistry of Biosurfaces (M. L. Hair, ed.), Vol. 2, pp. 449–487, Marcel Dekker, New York (1972).

    Google Scholar 

  13. J. A. Bergeron, J. M. DiNovo, A. F. Razzano, and W. J. Dodds, Non-thrombogenicity of clean glass revealed by native whole blood assay in bead columns, Thromb. Haemostas. 50(4), 814–820 (1983).

    CAS  Google Scholar 

  14. R. E. Baier, R. C. Dutton, and V. L. Gott, Surface chemical features of blood vessel walls and of synthetic materials exhibiting thromboresistance, in: Surface Chemistry of Biological Systems (M. Blank, ed.), pp. 235–260, Plenum Press, New York (1970).

    Google Scholar 

  15. R. E. Baier, V. L. Gott, and R. C. Dutton, Thromboresistance of Stellite 21: The role of an adventitious waxy contaminant, J. Biomed. Mater. Res. 6, 465–470 (1972).

    Article  CAS  Google Scholar 

  16. S. R. Hanson, L. A. Harker, B. D. Ratner, and A. S. Hoffman, Evaluation of artificial surfaces using baboon arterio-venous shunt model, in: Biomaterials 1980, Advances in Biomaterials (G. D. Winter, D. F. Gibbons, and H. Plenk, Jr., eds.), Vol. 3, pp. 519–530, John Wiley and Sons, Chichester, England (1982).

    Google Scholar 

  17. B. D. Ratner, ESCA studies of extracted polyurethanes and polyurethane extracts: Biomedical implications, in: Physicochemical Aspects of Polymer Surfaces (K. L. Mittal, ed.), Vol. 2, pp. 969–983, Plenum Press, New York (1983).

    Google Scholar 

  18. S. R. Hanson, L. A. Harker, B. D. Ratner, and A. S. Hoffman, In vivo evaluation of artificial surfaces with a nonhuman primate model of arterial thrombosis, J. Lab. Clin. Med. 95, 289–304 (1980).

    CAS  Google Scholar 

  19. B. D. Ratner, ESCA and SEM studies on polyurethanes for biomedical applications, in: Photon, Electron, and Ion Probes of Polymer Structure and Properties, ACS Symposium Series (D. W. Dwight, T. J. Fabish, and H. R. Thomas, eds.), Vol. 162, pp. 371–382, American Chemical Society, Washington, D.C. (1981).

    Chapter  Google Scholar 

  20. C. B. Hu and C. S. P. Sung, Surface chemical composition-depth profile of polyether polyurethaneureas as studied by FT-IR and ESCA, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 21, 156–158 (1980).

    Google Scholar 

  21. K. Knutson and D. J. Lyman, The effect of polyether segment molecular weight on the bulk and surface morphologies of copolyether-urethane-ureas, in: Biomaterials: Interfacial Phenomena and Applications, ACS Advances in Chemistry Series (S. L. Cooper and N. A. Peppas, eds.), Vol. 199, pp. 109–132, American Chemical Society, Washington, D.C. (1982).

    Chapter  Google Scholar 

  22. R. W. Paynter, B. D. Ratner, and H. R. Thomas, Polyurethane surfaces—An XPS study, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem. 24, 13–14 (1983).

    CAS  Google Scholar 

  23. E. W. Merrill, E. W. Salzman, S. Wan, N. Mahmud, L. Kushner, J. N. Lindon, and J. Curme, Platelet-compatible hydrophilic segmented polyurethanes from polyethylene glycols and cyclohexane diisocyanate, Trans. Am. Soc. Artif. Int. Organs 28, 482–487 (1982).

    CAS  Google Scholar 

  24. S. W. Graham and D. M. Hercules, Surface spectroscopic studies of Biomer, J. Biomed. Mater. Res. 15, 465–477 (1981).

    Article  CAS  Google Scholar 

  25. M. D. Lelah, L. K. Lambrecht, B. R. Young, and S. L. Cooper, Physiochemical characterization and in vivo blood tolerability of cast and extruded Biomer, J. Biomed. Mater. Res. 17, 1–22 (1983).

    Article  CAS  Google Scholar 

  26. E. Nyilas, Development of blood-compatible elastomers. II. Performance of Avcothane blood contact surfaces in experimental animal implantations, J. Biomed. Mater. Res. Symp. 3, 97–127 (1972).

    Article  CAS  Google Scholar 

  27. E. Nyilas and R. S. Ward, Jr., Development of blood-compatible elastomers. V. Surface structure and blood compatibility of Avcothane elastomers, J. Biomed. Mater. Res. Symp. 8, 69–84 (1977).

    Article  Google Scholar 

  28. R. S. Ward, Jr., Development of thermoplastics for blood-contacting biomedical devices, ACS Div. Org. Coat. Plast. Chem., Prepr. 42, 227–231 (1980).

    CAS  Google Scholar 

  29. B. C. Arkles, IPN-modified silicone thermoplastics, Med. Dev. Diagnostics Ind. 5, 66–70 (1983).

    CAS  Google Scholar 

  30. B. Ashar, L. R. Turcotte, and L. A. Naturman, Development of a melt-processable copolymer for biomedical devices, Trans. Soc. Biomat. 5, 22 (1982).

    Google Scholar 

  31. R. S. Ward, P. Litwack, and R. Rodvien, Improved blood compatibility of modified thermoplastics, Trans. Soc. Biomat. 5, 46 (1982).

    Google Scholar 

  32. J. N. Mulvihill, J. P. Cazenave, A. Schmitt, P. Maisonneuve, and C. Pusineri, Biocompatibility and interfacial phenomena, Colloids and Surfaces 14, 317–324 (1985).

    CAS  Google Scholar 

  33. A. C. Beall, Biomaterials: Magnitude of the need, in: Contemporary Biomaterials: Material and Host Response, Clinical Applications, New Technology and Legal Aspects (J. W. Boretos and M. Eden, eds.), pp. 5–9, Noyes Publication, Park Ridge, New Jersey (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Ratner, B.D. (1987). Surface Contamination and Biomaterials. In: Mittal, K.L. (eds) Treatise on Clean Surface Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9126-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9126-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9128-9

  • Online ISBN: 978-1-4684-9126-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics