Surface Contamination and Biomaterials

  • Buddy D. Ratner


Synthetic materials for medical applications (biomaterials) are widely used in the United States today. The types of materials used to fabricate medical implant devices include plastics, elastomers, fibers, metals, carbons, ceramics, glasses, and composites. The extent of the use of synthetics in medicine is emphasized by the numbers of implants itemized in Table 1. Although high success rates are generally realized with these implants, there is much room for improvement. It is reasonable to surmise that an enhanced understanding of the surface of these implants, the region directly interfacing with the body, can lead to improvements in performance of these devices.


Contact Angle Glass Surface Silicone Rubber Intraocular Lens Surface Contamination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. Mittal, ed., Surface Contamination: Genesis, Detection and Control, Plenum Press, New York (1979).Google Scholar
  2. 2.
    B. D. Ratner, J. J. Rosen, A. S. Hoffman, and L. H. Scharpen, An ESCA study of surface contaminants on glass substrates for cell adhesion, in: Surface Contamination: Genesis, Detection and Control (K. L. Mittal, ed.), Vol. 2, pp. 669–686, Plenum Press, New York (1979).Google Scholar
  3. 3.
    E. Nyilas, E. L. Kupski, P. Burnett, and R. M. Haag, Surface microstructural factors and the blood compatibility of a silicone rubber, J. Biomed. Mater. Res. 4, 369–432 (1970).CrossRefGoogle Scholar
  4. 4.
    B. D. Ratner, Analysis of surface contaminants on intraocular lenses, Arch. Ophthalmol. 101, 1434–1438 (1983).CrossRefGoogle Scholar
  5. 5.
    D. W. Meltzer, Gamma ray sterilization and its effect on intraocular lenses, Am. Intra-Ocular Implant Soc. J. 7, 126–129 (1981).Google Scholar
  6. 6.
    R. E. Baier, A. E. Meyer, C. K. Akers, J. R. Natiella, M. Meenaghan, and J. M. Carter, Degradative effects of conventional steam sterilization on biomaterial surfaces, Biomaterials 3, 241–245 (1982).CrossRefGoogle Scholar
  7. 7.
    P. Didisheim, M. K. Dewanjee, D. N. Fass, V. Fuster, K. E. Holley, M. P. Kaye, P. E. Zollman, and M. V. Tirrell, Blood Compatibility of Circulatory Assist Devices, Annual Report, June 30, 1981, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md., 20014, PB 82 1295 37.Google Scholar
  8. 8.
    D. W. Meltzer, R. C. Drews, and A. S. Hajek, Millipore filters in ophthalmic surgery: A caution concerning their use, Am. Intra-Ocular Implant Soc. J. 7, 143–146 (1981).Google Scholar
  9. 9.
    R. E. Baier, V. A. Depalma, A. Furuse, V. L. Gott, G. W. Kammlott, T. Lucas, P. N. Sawyer, S. Srinivasan, and B. Stanczewski, Thromboresistance of glass after glow discharge treatment in argon, J. Biomed. Mater. Res. 9, 547–560 (1975).CrossRefGoogle Scholar
  10. 10.
    J. R. Vig, UV/ozone cleaning of surfaces: A review, in: Surface Contamination: Genesis, Detection and Control (K. L. Mittal, ed.), Vol. 1, pp. 235–253, Plenum Press, New York (1979).CrossRefGoogle Scholar
  11. 11.
    L. Smith, D. Hill, J. Hibbs, S. W. Kim, J. Andrade, and D. Lyman, Glow discharge surface treatment for improved cellular adhesion, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 16, 186–190 (1975).Google Scholar
  12. 12.
    C. Rappaport, Some aspects of the growth of mammalian cells on glass surfaces, in: The Chemistry of Biosurfaces (M. L. Hair, ed.), Vol. 2, pp. 449–487, Marcel Dekker, New York (1972).Google Scholar
  13. 13.
    J. A. Bergeron, J. M. DiNovo, A. F. Razzano, and W. J. Dodds, Non-thrombogenicity of clean glass revealed by native whole blood assay in bead columns, Thromb. Haemostas. 50(4), 814–820 (1983).Google Scholar
  14. 14.
    R. E. Baier, R. C. Dutton, and V. L. Gott, Surface chemical features of blood vessel walls and of synthetic materials exhibiting thromboresistance, in: Surface Chemistry of Biological Systems (M. Blank, ed.), pp. 235–260, Plenum Press, New York (1970).Google Scholar
  15. 15.
    R. E. Baier, V. L. Gott, and R. C. Dutton, Thromboresistance of Stellite 21: The role of an adventitious waxy contaminant, J. Biomed. Mater. Res. 6, 465–470 (1972).CrossRefGoogle Scholar
  16. 16.
    S. R. Hanson, L. A. Harker, B. D. Ratner, and A. S. Hoffman, Evaluation of artificial surfaces using baboon arterio-venous shunt model, in: Biomaterials 1980, Advances in Biomaterials (G. D. Winter, D. F. Gibbons, and H. Plenk, Jr., eds.), Vol. 3, pp. 519–530, John Wiley and Sons, Chichester, England (1982).Google Scholar
  17. 17.
    B. D. Ratner, ESCA studies of extracted polyurethanes and polyurethane extracts: Biomedical implications, in: Physicochemical Aspects of Polymer Surfaces (K. L. Mittal, ed.), Vol. 2, pp. 969–983, Plenum Press, New York (1983).Google Scholar
  18. 18.
    S. R. Hanson, L. A. Harker, B. D. Ratner, and A. S. Hoffman, In vivo evaluation of artificial surfaces with a nonhuman primate model of arterial thrombosis, J. Lab. Clin. Med. 95, 289–304 (1980).Google Scholar
  19. 19.
    B. D. Ratner, ESCA and SEM studies on polyurethanes for biomedical applications, in: Photon, Electron, and Ion Probes of Polymer Structure and Properties, ACS Symposium Series (D. W. Dwight, T. J. Fabish, and H. R. Thomas, eds.), Vol. 162, pp. 371–382, American Chemical Society, Washington, D.C. (1981).CrossRefGoogle Scholar
  20. 20.
    C. B. Hu and C. S. P. Sung, Surface chemical composition-depth profile of polyether polyurethaneureas as studied by FT-IR and ESCA, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 21, 156–158 (1980).Google Scholar
  21. 21.
    K. Knutson and D. J. Lyman, The effect of polyether segment molecular weight on the bulk and surface morphologies of copolyether-urethane-ureas, in: Biomaterials: Interfacial Phenomena and Applications, ACS Advances in Chemistry Series (S. L. Cooper and N. A. Peppas, eds.), Vol. 199, pp. 109–132, American Chemical Society, Washington, D.C. (1982).CrossRefGoogle Scholar
  22. 22.
    R. W. Paynter, B. D. Ratner, and H. R. Thomas, Polyurethane surfaces—An XPS study, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem. 24, 13–14 (1983).Google Scholar
  23. 23.
    E. W. Merrill, E. W. Salzman, S. Wan, N. Mahmud, L. Kushner, J. N. Lindon, and J. Curme, Platelet-compatible hydrophilic segmented polyurethanes from polyethylene glycols and cyclohexane diisocyanate, Trans. Am. Soc. Artif. Int. Organs 28, 482–487 (1982).Google Scholar
  24. 24.
    S. W. Graham and D. M. Hercules, Surface spectroscopic studies of Biomer, J. Biomed. Mater. Res. 15, 465–477 (1981).CrossRefGoogle Scholar
  25. 25.
    M. D. Lelah, L. K. Lambrecht, B. R. Young, and S. L. Cooper, Physiochemical characterization and in vivo blood tolerability of cast and extruded Biomer, J. Biomed. Mater. Res. 17, 1–22 (1983).CrossRefGoogle Scholar
  26. 26.
    E. Nyilas, Development of blood-compatible elastomers. II. Performance of Avcothane blood contact surfaces in experimental animal implantations, J. Biomed. Mater. Res. Symp. 3, 97–127 (1972).CrossRefGoogle Scholar
  27. 27.
    E. Nyilas and R. S. Ward, Jr., Development of blood-compatible elastomers. V. Surface structure and blood compatibility of Avcothane elastomers, J. Biomed. Mater. Res. Symp. 8, 69–84 (1977).CrossRefGoogle Scholar
  28. 28.
    R. S. Ward, Jr., Development of thermoplastics for blood-contacting biomedical devices, ACS Div. Org. Coat. Plast. Chem., Prepr. 42, 227–231 (1980).Google Scholar
  29. 29.
    B. C. Arkles, IPN-modified silicone thermoplastics, Med. Dev. Diagnostics Ind. 5, 66–70 (1983).Google Scholar
  30. 30.
    B. Ashar, L. R. Turcotte, and L. A. Naturman, Development of a melt-processable copolymer for biomedical devices, Trans. Soc. Biomat. 5, 22 (1982).Google Scholar
  31. 31.
    R. S. Ward, P. Litwack, and R. Rodvien, Improved blood compatibility of modified thermoplastics, Trans. Soc. Biomat. 5, 46 (1982).Google Scholar
  32. 32.
    J. N. Mulvihill, J. P. Cazenave, A. Schmitt, P. Maisonneuve, and C. Pusineri, Biocompatibility and interfacial phenomena, Colloids and Surfaces 14, 317–324 (1985).Google Scholar
  33. 33.
    A. C. Beall, Biomaterials: Magnitude of the need, in: Contemporary Biomaterials: Material and Host Response, Clinical Applications, New Technology and Legal Aspects (J. W. Boretos and M. Eden, eds.), pp. 5–9, Noyes Publication, Park Ridge, New Jersey (1984).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Buddy D. Ratner
    • 1
  1. 1.National ESCA and Surface Analysis Center for Biomedical Problems (NESAC/BIO), Center for Bioengineering and Department of Chemical Engineering, BF-10University of WashingtonSeattleUSA

Personalised recommendations