Advertisement

Recent Advances in Columbium Alloys

  • R. G. Frank

Abstract

The status of columbium alloys is reviewed with respect to major applications, production, cost and selected properties. Alloys with low to moderate strength and good ductility and that are readily fabricable and weldable are commercially available. These alloys were the first of the columbium base alloys to receive serious consideration for use in components on actual flight systems. Emphasis in the development of new columbium alloys over the past several years has been directed toward the achievement of greater creep strength in the 2000°F to 2400°F temperature range and more recently, improved oxidation resistance in combination with varying levels of strength and ductility.

Keywords

Post Weld Heat Treatment Refractory Metal Creep Strength Creep Property Rupture Life 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Quarreil (Ed), Niobium, Tantalum, Molybdenum and Tungsten, Elsevier, 1961.Google Scholar
  2. 2.
    D. L. Douglass and F. W. Kunz (Eds), Columbium Metallurgy, Interscience, 1961.Google Scholar
  3. 3.
    M. Semchyshen and J. J. Harwood (Eds), Refractory Metals and Alloys, Interscience, 1961.Google Scholar
  4. 4.
    G. M. Ault, W. F. Barclay and H. P. Munger (Eds), High Temperature Materials II, Interscience, 1963.Google Scholar
  5. 5.
    M. Semchyshen and I. Perlmutter (Eds), Refractory Metals and Alloys II, Interscience, 1963.Google Scholar
  6. 6.
    R. I. Jaffee (Ed), Refractory Metals and Alloys III: Applied Aspects, Gordon & Breach, 1966.Google Scholar
  7. 7.
    N. E. Promisel (Ed), The Science and Technology of Tungsten, Tantalum, Molybdenum, Niobium and Their Alloys, Pergamon Press, 1964.Google Scholar
  8. 8.
    R. W. Fountain, J. Maltz and L. S. Richardson, High Temperature Refractory Metals — Part 2, Gordon & Breach, 1966.Google Scholar
  9. 9.
    F. T. Sisco and E. Epremian (Eds), Columbium and Tantalum, John Wiley and Sons, 1963.Google Scholar
  10. 10.
    T. E. Tietz and J. W. Wilson, Behavior and Properties of Refractory Metals, Stanford University Press, 1965.Google Scholar
  11. 11.
    T. E. Green and C. B. P. Minton, “Titanium, Zirconium and Niobium,” Journal of the Institute of Metals, 1965.Google Scholar
  12. 12.
    Liquid Sodium Metal Cooled Fast Breeder Reactor (LMFBR) Program-Fuels and Materials Summary Report, Fuels and Materials Branch, USAEC Report Wash.-1065, January, 1966.Google Scholar
  13. 13.
    J. H. Keeler, “Commerical Applications of Refractory Metals,” ASME Design Engineering Conference, New York, May 17 to 20, 1965.Google Scholar
  14. 14.
    F. H. Buttner and R. W. Hale, The Refractory Metals — An Evaluation of Availability, DMIC Memorandum 235, March, 1968.Google Scholar
  15. 15.
    F. T. Sisco and E. Epremian (Eds), Columbium and Tantalum, John Wiley and Sons, 1963, p. 5.Google Scholar
  16. 16.
    F. T. Sisco and E. Epremian (Eds), Columbium and Tantalum, John Wiley and Sons, 1963* Ibid., p. vii.Google Scholar
  17. 17.
    U. S. Bureau of Mines, 1967.Google Scholar
  18. 18.
    W. H. Chang, Influence of Heat Treatment on Microstructure and Properties of Columbium Base and Chromium Base Alloys, ASD TDR-62–211, Part IV, March, 1966.Google Scholar
  19. 19.
    R. T. Begley, J. L. Godshall and D. Harrod, Development of Columbium Base Alloys, AFML TR-65–385, January, 1966.Google Scholar
  20. 20.
    R. T. Begley, J. A. Cornie and R. C. Goodspeed, Development of Columbium Base Alloys, AFML TR-67–116, November, 1967.Google Scholar
  21. 21.
    F. P. Talboom, A. D. Joseph and E. F. Bradley, “Columbium Systems for Turbine Blade Applications,” SAE-ASME Air Transport and Space Meeting, New York, April 27 to 30, 1964.Google Scholar
  22. 22.
    A. L. Hoffmanner, “Thermal-Mechanical Processing of Precipitation Hardenable-Dispersion Hardened Columbium Alloy,” AIME Refractory Metals Symposium, French Lick, Indiana, October, 1965.Google Scholar
  23. 23.
    C. R. Smeal, An Investigation of High Strength Refractory Metal Alloys — The Influence of Thermal-Mechanical Treatments on the Structure and Properties of High Carbon Cb-132M, TRW Inc. Summary Report ER 7081, January 31, 1967.Google Scholar
  24. 24.
    R. T. Begley and J. A. Cornie, Investigation of the Effects of Thermal-Mechanical Variables on the Creep Properties of High Strength Columbium Alloys, Westinghouse Electric Corp., Ctr. AF33615–67-C-1443, 1967.Google Scholar
  25. 25.
    S. T. Scheirer, Development of Columbium Alloy Combinations for Gas Turbine Blade Applications, TRW Inc., Contract AF33615–67-C-1688, 1967.Google Scholar
  26. 26.
    Personal Communication, Norman R. Gardner, Kawecki Chemical Company, March 8, 1968.Google Scholar
  27. 27.
    E. M. Savitskii, V. V. Baron and K. N. Ivanova, “Niobium Base Alloys and Their Properties,” Sampe Journal, Vol. 4, No. 2, February/March 1968. Translated from Atomnaya Energia, Vol. 23, Academy of Science, USSR, 1967.Google Scholar
  28. 28.
    I. S. Malashenko, “Effect of Carbon on the Structure and Tensile Properties of Niobium and Its Alloys,” IZV Akad Nauk SSSR Metally, No. 3, 1967, p. 159.Google Scholar
  29. 29.
    D. Geiselman, T. K. Roche and D. L. Graham, Development of Oxidation Resistant High Strength Columbium Base Alloys, Union Carbide Corp., Ctr. AF33(615)-3856, 1966, 1967.Google Scholar
  30. 30.
    J. A. Cornie, Development of a Ductile Oxidation Resistant Columbium Alloy, Westinghouse Electric Corp., Ctr. AF33615–67-C-1689, 1967, 1968.Google Scholar
  31. 31.
    H. R. Babitzke, R. E. Siemens and H. Kato, High Temperature Columbium and Tantalum Alloys, U. S. Dept. of the Interior, Bureau of Mines Report 6777, 1966.Google Scholar
  32. 32.
    R. Yoda, H. R. Babitzke and H. Kato, Study of Columbium Base Alloys, U. S. Dept. of the Interior, Bureau of Mines Report 6988, July, 1967.Google Scholar
  33. 33.
    G. D. McAdam, “Substitutional Niobium Alloys of High Creep Strength,” Journal of the Institute of Metals, December, 1965, p. 559.Google Scholar
  34. 34.
    G. D. McAdam, “The Influence of Carbide and Boride Additions on the Creep Strength of Niobium Alloys,” The Journal of the Institute of Metals, January, 1968, p. 13.Google Scholar
  35. 35.
    J. W. Clark, Recent Developments in Columbium Base Alloys, General Electric Company, Aircraft Engine Group Brochure, February, 1962.Google Scholar
  36. 36.
    J. C. Sawyer and E. A. Steigerwald, “Creep Properties of Refractory Metal Alloys in Ultra-High Vacuum,” Journal of Materials, Vol. 2, No. 2, June, 1967, p. 341.Google Scholar
  37. 37.
    H. E. McCoy, “Creep Properties of the Niobium-1% Zirconium Alloy,” Journal of the Less Common Metals, Vol. 8, 1965, p. 20.CrossRefGoogle Scholar
  38. 38.
    M. Schussler, Properties of Haynes Alloy Cb-753, Union Carbide Corp., March 1, 1965.Google Scholar
  39. 39.
    R. L. Stephenson, Creep Rupture Properties of Cb-752 Alloy and the Response to Heat Treatment, ORNL-TM-1577, August, 1966.Google Scholar
  40. 40.
    R. L. Stephenson, The Effect of Heat Treatment on the Creep Rupture Properties of D-43 Alloy, ORNL-TM-1587, September, 1966.Google Scholar
  41. 41.
    R. H. Titran and R. W. Hall, High Temperature Creep Behavior of Columbium Alloy FS-85, NASA TN D-2885, June, 1965.Google Scholar
  42. 42.
    R. H. Titran and R. W. Hall, Ultra-High Vacuum Creep Behavior of Columbium and Tantalum Alloys at 2000 and 2200 F for Times Greater than 1000 Hours, NASA TM X-52130, 1965.Google Scholar
  43. 43.
    R. L. Stephenson, “Creep Properties of SU-16,” Metals and Ceramics Division Annual Progress Report, ORNL-4170, November, 1967.Google Scholar
  44. 44.
    J. J. English and E. S. Bartlett, Recent Information on Long Time Creep Data for Columbium Alloys, DMIC Memorandum 203, April 26, 1965.Google Scholar
  45. 45.
    R. W. Harrison, Compatibility of Biaxially Stressed D-43 Alloy with Refluxing Potassium, NASA CR-807, June, 1967.Google Scholar
  46. 46.
    P. Grodzinski, “Investigation on Shaft Fillets,” Engineering (London), Vol. 152, 1941, p. 321.Google Scholar
  47. 47.
    H. E. McCoy, “Correlation of Creep Properties for Constant and Varying Stresses,” Metals and Ceramics Division Annual Progress Report, ORNL-3870, November, 1965, p. 122.Google Scholar
  48. 48.
    F. N. Lake and C. R. Smeal, Process Development for Precision Forging Columbium Base Alloys, AFML TR-67–94, April, 1967.Google Scholar
  49. 49.
    General Electric Data, February, 1967.Google Scholar
  50. 50.
    Columbium, Tantalum and Tungsten Alloys, Wah Chang Albany Technical Information, Vol. 3, January, 1968.Google Scholar
  51. 51.
    H. L. Kohn and R. M. Curcio, Columbium Alloy Sheet Rolling Program, Fansteel Metallurgical Corp. Final Report, Ctr. NOv 63–0231-C, October, 1964.Google Scholar
  52. 52.
    R. A. Nadler, Processing and Evaluation of Preproduction Quantities of Columbium Alloy Sheet, Westinghouse Electric Corp. Final Report, Ctr. N 600(19)-59546, January, 1964.Google Scholar
  53. 53.
    J. W. Davis and R. M. Curcio, Fabrication of Fansteel 85 Metal Sheet, Fansteel Metallurgical Corp. Final Report, Ctr. NOw 65–0498-f, March, 1966.Google Scholar
  54. 54.
    J. S. Clark, A. L. Mincher and G. N. Villee, The Development of Optimum Manufacturing Methods for Columbium Alloy Sheet, RTD TDR-63–4236, 1963.Google Scholar
  55. 55.
    J. G. Bewley, “Strengthening of Columbium Alloy Cb-752 by Duplex Annealing Process,” AIME Conference Physical Metallurgy of Refractory Metals, French Lick, Indiana, October 3 to 5, 1965.Google Scholar
  56. 56.
    G. G. Lessmann, “The Comparative Weldability of Refractory Metal Alloys,” Welding Journal, Vol. 45, No. 12, December, 1966, p. 540-S.Google Scholar
  57. 57.
    R. G. Donnelly, “Welding of Advanced Refractory Alloys,” Metals and Ceramics Division Annual Progress Report, ORNL-4170, November, 1967, p. 71.Google Scholar
  58. 58.
    G. G. Lessmann, The Effect of 1000-Hour Thermal Exposures on Tensile Properties of Refractory Metal Alloys, NASA-CR-72095, Topical Report No. 1, Ctr. NAS 3–2540.Google Scholar
  59. 59.
    L. B. Engel, Jr. and R. G. Frank, Evaluation of High Strength Columbium Alloys for Alkali Metal Containment, General Electric Company Final Report R66SD3015, Covering the Period of July 1962 to December 1964, Ctr. NAS 3–2140.Google Scholar
  60. 60.
    V. L. Newhouse, Applied Superconductivity, John Wiley and Sons, Inc., New York, 1964.Google Scholar
  61. 61.
    M. G. Benz, Mechanical and Electrical Properties of Diffusion Processed Nb 3 Sn-Copper-Stainless Steel Composite Conductors, General Electric Report No. 67-C-459, December, 1967.Google Scholar

Bibliography

  1. 1.
    R. L. Stephenson and R. G. Donnelly, Effect of Aging on the Creep Rupture Properties of D-43 Welds, ORNL-TM-1708, January, 1967.Google Scholar
  2. 2.
    F. Osternann and F. Bollenrath, Investigation of Precipitates in Two Carbon-Containing Columbium-Base Alloys, AFML TR-66–259, December, 1966.Google Scholar
  3. 3.
    T. K. Roche, “Aging Studies on the D-43 Alloy,” Metals and Ceramics Division Annual Progress Report, ORNL-3870, November, 1965, p. 116.Google Scholar
  4. 4.
    B. Harris and D. E. Peacock, “Low Temperature Mechanical Properties of a Solution Hardened Niobium (Columbium) Alloy,” AIME Transactions, Vol. 233, July, 1965, p. 1308.Google Scholar
  5. 5.
    B. Harris and D. E. Peacock, “Physical Properties of Some Niobium (Columbium) Alloys at Low Temperature,” AIME Transactions, Vol. 236, April, 1966, p. 471.Google Scholar
  6. 6.
    B. Harris, “Structural Changes During Creep of a Solution Hardened Niobium Alloy,” Journal of the Less-Common Metals, Vol. 9, 1965, p. 244.CrossRefGoogle Scholar
  7. 7.
    E. J. Delgrosso, C. E. Carlson and J. J. Kaminsky, Development of Cb-Zr-C Alloys, PWAC-464, September, 1965.Google Scholar
  8. 8.
    C. E. Carlson and E. J. Delgrosso, Recovery and Recrystallization of Columbium and Several Columbium-Zirconium Alloys, PWAC-465, September, 1965.Google Scholar
  9. 9.
    J. G. Bewley and M. Schussler, Final Report on Process Improvement of Columbium (Cb-752) Alloy, AFML TR-65–63, March, 1965.Google Scholar
  10. 10.
    E. S. Bartlett and J. A. VanEcho, Creep of Columbium Alloys, DMIC Memorandum 170, June 24, 1963.Google Scholar
  11. 11.
    F. F. Schmidt and H. R. Ogden, The Engineering Properties of Columbium and Columbium Alloys, EMIC Report No. 188, September 6, 1963.Google Scholar
  12. 12.
    H. R. Babitzke, R. E. Siemens, G. Asai and H. Kato, Development of Columbium and Tantalum Alloys for Elevated Temperature Service, U. S. Department of the Interior, Bureau of Mines Report 6558, 1964.Google Scholar
  13. 13.
    H. R. Babitzke, M. D. Carver and H. Kato, Columbium and Tantalum Alloys Suitable for Use in High Temperatures, U. S. Department of the Interior, Bureau of Mines Report 6390, 1964.Google Scholar
  14. 14.
    D. J. Maykuth, Summary of Contractor Results in Support of the Refractory Metals Sheet Rolling Program, DMIC Report 231, December 1, 1966.Google Scholar
  15. 15.
    Materials Advisory Board, Final Report of the Refractory Metals Sheet Rolling Panel, National Academy of Sciences-National Research Council Publication, MAB-212-M, March, 1966.Google Scholar
  16. 16.
    S. R. Thompson, W. R. Young and W. H. Kearns, Investigation of the Structural Stability of Welds in Columbium Alloys, ML TDR-64–210, Part II, April, 1966.Google Scholar
  17. 17.
    J. M. Gerken, A Study of Welds in Columbium Alloy D-43, TRW, Inc. Report TM 3865–67, March 25, 1964.Google Scholar
  18. 18.
    J. D. W. Rawson and B. B. Argent, “The Effect of Oxygen and Carbon on the Creep Strength of Niobium,” The Journal of the Institute of Metals, Vol. 95, July, 1967, p. 212.Google Scholar
  19. 19.
    N. S. Bornstein, E. C. Hirakis and L. A. Friedrich, Carburization of Cb-1Zr Alloy, Pratt and Whitney Aircraft Division Report TIM-927, August, 1965.Google Scholar
  20. 20.
    R. M. Bonesteel, J. L. Lytton, D. J. Roweliffe and T. E. Tietz, Recovery and Internal Oxidation of Columbium and Columbium Alloys, AFML TR-66–253, November, 1966.Google Scholar
  21. 21.
    W. F. Scheely, “Mechanical Properties of Niobium-Oxygen Alloys,” Journal of the Less-Common Metals, Vol. 4, 1962, p. 487.CrossRefGoogle Scholar
  22. 22.
    R. A. Rapp and G. M. Goldberg, “The Oxidation of Cb-Zr and Cb-Zr-Re Alloys in Oxygen at 1000°C,” AIME Transactions, Vol. 236, November, 1966, p. 1619.Google Scholar
  23. 23.
    R. T. Bryant, “The Solubility of Oxygen in Transition Metal Alloys,” The Journal of the Less-Common Metals, Vol. 4, 1962, p. 62.CrossRefGoogle Scholar
  24. 24.
    J. F. Hogan, E. A. Limoncelli and R. E. Cleary, Reaction Rate of Columbium -1 Zirconium Alloy with Oxygen at Low Pressures, Pratt and Whitney Aircraft Division Report TIM-901, September, 1965.Google Scholar
  25. 25.
    E. A. Limoncelli, High Temperature Refractory Alloy Testing in a Low Pressure Flowing Argon Environment, Pratt and Whitney Aircraft Division Report TIM-903, September, 1965.Google Scholar
  26. 26.
    J. Stoop and P. Shahinian, The Effect of Nitrogen on the Tensile and Creep Rupture Properties of Niobium, Naval Research Laboratory Report No. 6464, Ocotber 31, 1966.Google Scholar
  27. 27.
    R. J. Walter, J. A. Ytterhus, R. D. Lloyd and W. T. Chandler, Effect of Water Vapor/Hydrogen Environments on Columbium Alloys, AFML TR-66–322, December, 1966.Google Scholar
  28. 28.
    R. J. Walter and W. T. Chandler, “The Compatibility of Tantalum and Columbium Alloys with Hydrogen,” AIAA Journal, Vol. 4, No. 2, February, 1966, p. 302.CrossRefGoogle Scholar
  29. 29.
    J. R. Stephens and R. G. Garlick, Compatibility of Tantalum, Columbium, and Their Alloys with Hydrogen in the Presence of a Temperature Gradient, NASA TN D-3546, August, 1966.Google Scholar
  30. 30.
    R. W. Webb, Permeation of Hydrogen through Metals, Atomics International Division Report No. NAA-SR-10462, July 25, 1965.Google Scholar
  31. 31.
    C. C. Masser, Vapor Pressure Data Extrapolated to 1000 Atmospheres (1.01 × 10 8 N/m 2 ) for Thirteen Refractory Materials with Low Thermal Absorption Cross-Sections, NASA TN D-4147, October, 1967.Google Scholar
  32. 32.
    D. T. Bourgette, High Temperature Chemical Stability of Refractory Base Alloys in High Vacuum, ORNL-TM-1431, April, 1966.Google Scholar
  33. 33.
    C. E. Lundin and R. H. Cox, “The Age Hardening Characteristics of Niobium Base Zirconium Alloys,” Journal of the Less-Common Metals, Vol. 13, No. 5 November, 1967, p. 501.CrossRefGoogle Scholar
  34. 34.
    A. Taylor and N. J. Doyle, “The Solid Solubility of Carbon in Nb and Nb-Rich Nb-Hf, Nb-Mo and Nb-W Alloys,” Journal of the Less-Common Metals, Vol. 13, No. 5, November, 1967, p. 511.CrossRefGoogle Scholar
  35. 35.
    A. Taylor, Research for Solubility of Interstitials in Columbium, 1- A Study of Columbium Rich Alloys in the Ternary System Cb-W-O, Cb-W-N, and Cb-W-C, AFML TR-65–48, March, 1965.Google Scholar
  36. 36.
    T. A. Roach and E. F. Gowan, Jr., Structural Fasteners for Extreme Elevated Temperatures, AFFDL TR-66–107, September, 1966.Google Scholar
  37. 37.
    T. Miyagishima, Investigation of High Strain Rate Behavior of Refractory Alloys and Coatings, The Marquardt Corp. Final Report No. PR-3009-F, Ctr. NAS 9–4905, February, 1966.Google Scholar
  38. 38.
    B. C. Allen and E. S. Bartlett, “Elevated Temperature Tensile Ductility Minimum in Silicide Coated Cb-10W and Cb-10W-2.5Zr,” ASM Transactions Quarterly, Vol. 60, No. 3, September, 1967, p. 295.Google Scholar
  39. 39.
    W. A. Gibeaut and E. S. Bartlett, Properties of Coated Refractory Metals, DMIC Report No. 195, January 10, 1964.Google Scholar
  40. 40.
    H. A. Hauser and J. F. Holloway, Jr., Evaluation and Improvement of Coatings for Columbium Alloy Gas Turbine Engine Components, AFML-TR-66–186, Part 1, July 1966.Google Scholar
  41. 41.
    R. B. Kaplan and F. A. Glaski, Research on Gas Plated Refractory Metal Coatings for Liquid Metal Compatibility Investigation, AFML-TR-66–72, April, 1966.Google Scholar
  42. 42.
    V. A. Kirillin, A. E. Sheindlin, and V. Yachekhovskoi and I. A. Zhukova, “The Thermodynamic Properties of Niobium in the Temperature Range from 0°K to the Melting Point 2740°K,” Teplofizika Vysokikh Temperatur, Vol. 3, No. 6, November to December, 1965, p. 860.Google Scholar
  43. 43.
    H. Conrad, Guiding Principles for Lowering the Ductile to Brittle Transition Temperature in the Body Centered Cubic Metals, Aerospace Corp. Report No. ATN-64(9236)-4, December 10, 1963.Google Scholar
  44. 44.
    C. W. Marschall, F. C. Holden, A. Gilbert, and B. L. Wilcox, Further Investigation of Notch-Sensitivity of Refractory Metals, AFML-TR-65–286, November, 1965.Google Scholar
  45. 45.
    A. Fourdeux, F. Rueda, E. Votava, and A. Wronski, Surface and Interfacial Effects in Relation to Brittleness in Refractory Metals, AFML-TR-65–226, April, 1966.Google Scholar
  46. 46.
    I. M. Nedokha, et al., Niobium-Metal of the Space Age, Efkiev, 1965, Joint Publications Research Service Translation No. 36718, July 28, 1966.Google Scholar
  47. 47.
    G. W. P. Rengstorff, High Purity Metals, DMIC Report No. 222, January 3, 1966.Google Scholar
  48. 48.
    A. N. Zelikman, O. E. Krein, and G. V. Samsonov, Metallurgy of Rare Metals, Izdatel’stvo Metallurgiya, Moskva, 1964, NASA TT-F-359, Israel Program for Scientific Translations, Jerusalem, 1966.Google Scholar
  49. 49.
    J. M. Williams, J. T. Stanley, and W. E. Brundage, “The Interaction of Radiation Produced Defects and Interstitial Impurity Atoms in Niobium,” ORNL-4097, Radiation Metallurgy Section Solid State Division Progress Report, April, 1967, p. 30.Google Scholar
  50. 50.
    P. R. V. Evans, A. F. Weinberg, and R. J. VanThyne, “The Radiation Hardening in Columbium,” Acta Metallurgica, Vol. 2, February, 1963, p. 143.CrossRefGoogle Scholar
  51. 51.
    H. E. McCoy and J. R. Weir, “Effect of Irradiation on Bend Transition Temperature of Molybdenum and Niobium Base Alloys,” Metals and Ceramics Division Annual Report, ORNL-3670, 1964, p. 87.Google Scholar
  52. 52.
    T. Kofstad, Studies of Oxidation of Niobium Alloys at Very High Temperatures, RTD ML-TR-67–40, April, 1967.Google Scholar
  53. 53.
    J. V. Peck, Resistance Welding of Refractory Metals, RTD ML-TR-67–130, June, 1967.Google Scholar
  54. 54.
    W. Batiuk, Fluidized Bed Techniques for Coating Refractory Metals, RTD ML-67–127, April, 1967.Google Scholar
  55. 55.
    A. Avguspinik, Reactions of Oxides and Carbides with Metals, UCRL Translations 10044, May, 1966.Google Scholar
  56. 56.
    J. A. DeMastry, Investigation of High Temperature Refractory Metals and Alloys for Thermionic Converters, RTD APL-TR-65–29, April, 1965.Google Scholar
  57. 57.
    M. Hoch, High Temperature Specific Heats of Refractory Metals and Alloys, RTD ML-TR-66–360, November, 1966.Google Scholar
  58. 58.
    A. P. Dannessa, “Characteristic Redistribution of Solute in Fusion Welding,” Welding Journal, December 1966, p. 569.Google Scholar
  59. 59.
    J. Hernaez, et al., “Influence of Surface Condition on the Mechanical Properties of Polycrystalline Niobium,” Rev. Met., Vol. 3, No. 2, March to April, 1967, p. 101 (Spanish).Google Scholar
  60. 60.
    J. A. Roberson, et al., “The Observation of Markers During the Oxidation of Columbium,” AIME Transactions, Vol. 239, No. 9, September, 1967, p. 1327.Google Scholar
  61. 61.
    E. M. Savitskii, et al., “Effect of Vanadium Additions on the Structure and Superconducting Properties of Niobium-Zirconium Alloys,” Russian Mets., No. 3, 1966, p. 100.Google Scholar
  62. 62.
    T. Doe, et al., “Peak Effect in Superconducting Nb-15 A/oZr-45 A/o Ti Alloys,” Journal of Applied Physics, Vol. 38, No. 10, September, 1967, p. 3811.CrossRefGoogle Scholar
  63. 63.
    F. F. Schmidt, and E. S. Bartlett, “The Mechanical Behavior of Refractory Metal Alloys,” Metal Treating, Vol. 18, No. 4, August to September, 1967, p. 12.Google Scholar
  64. 64.
    A. I. Evstyakhin, et al., “Study of Alloys in the Niobium-Zirconium System,” High Purity Metals and Alloys, Fabrication, Properties and Testing, Plenum Press, 1967, p. 37.Google Scholar
  65. 65.
    A. C. Prior, “A Comparative Review of Materials for Construction of Superconducting Solenoids,” Cryogenics, Vol. 7, No. 3, June, 1967, p. 131.CrossRefGoogle Scholar
  66. 66.
    C. M. Yen, et al., “Superconducting Hc-Jc and Tc Measurements in the Niobium-Titanium-Nitrogen, Niobium-Hafnium-Nitrogen and Niobium-Vanadium-Nitrogen Ternary Systems,” Journal of Applied Physics, Vol. 38, No. 5, April, 1967, p. 2268.CrossRefGoogle Scholar
  67. 67.
    E. M. Savitskii, et al., “Dispersion Strengthening in Niobium-Base Alloys,” IZV Akad Nauk SSSR Metally, No. 3, 1967, p. 152 (Russian).Google Scholar
  68. 68.
    Y. Sasaki, et al., “Mechanical Properties of Niobium-Hydrogen Alloys,” Japanese Institute of Metals, Vol. 31, No. 4, April, 1967, p. 401 (Japanese).Google Scholar
  69. 69.
    K. Tachikawa, et al., “Fabrication of Multi-layered Nb3Sn Superconducting Wire,” NRIM Transactions, Vol. 9, No. 1, 1967, p. 39.Google Scholar
  70. 70.
    C. P. Davis, et al., “Welding of Refractory Alloys,” Machinery, Vol. 73. No. 9, May, 1967, p. 92.Google Scholar
  71. 71.
    R. A. Pasternak and B. Evans, “Adsorption, Absorption, and Degassing in the Oxygen-Niobium System at Very Low Pressures,” Journal of the Electro-Chemical Society. Vol. 114, No. 5, May, 1967, p. 452.CrossRefGoogle Scholar
  72. 72.
    H. W. Lavendel, et al., “Evaluation of Silicide Coatings on Columbium and Tantalum and a Means for Improving Their Oxidation Resistance,” AIME Transactions, Vol. 239, No. 2, February, 1967, p. 143.Google Scholar
  73. 73.
    B. Harrison, “The Influence of Some Solutes on Young’s Modulus of Niobium,” Journal of the Less-Common Metals, Vol. 12, No. 3, March, 1967, p. 247.CrossRefGoogle Scholar
  74. 74.
    E. J. DelGrosso, “Development of Nb-Zr-C Alloys,” Journal of the Less-Common Metals, Vol. 12, No. 3, March, 1967, p. 113.CrossRefGoogle Scholar
  75. 75.
    D. K. Bowen, et al., “Deformation Properties of Niobium Single Crystals,” Canadian Journal of Physics, Vol. 45, No. 2, February, 1967, p. 903.CrossRefGoogle Scholar
  76. 76.
    T. J. Sherwood, et al., “Plastic Anisotropy of Tantalum, Niobium, and Molybdenum,” Canadian Journal of Physics, Vol. 45, No. 2, February, 1967, p. 1075.CrossRefGoogle Scholar
  77. 77.
    D. A. Prokoshkin, et al., “Research into the Oxidiation of Niobium Alloyed with Vanadium, Titanium and Zirconium,” Nauka, Moskow, 1966, p. 285 (Russian).Google Scholar
  78. 78.
    H. E. McCoy, “Carburizing of Niobium and Tantalum Base Alloys,” Journal of the Less-Common Metals, Vol. 12, No. 2, February, 1967, p. 139.CrossRefGoogle Scholar
  79. 79.
    D. C. Briggs, et al., Aging in Niobium Rich Niobium-Hafnium-Carbon Alloys, Report No. R 185 of Department of Energy, Mines and Resources, Mines Branch, Ottawa, Canada, September, 1966.Google Scholar
  80. 80.
    R. A. Meussner, et al., “Oxidation and Self Repair of the Zinc Based High Temperature Coating for Niobium,” Corrosion Science, Vol. 7, No. 2, February, 1967, p. 103.CrossRefGoogle Scholar
  81. 81.
    J. Chelius, Use of Refractory Metals in Corrosive Environment Service, ASM-ASTME Technical Report WES-7–56, 1967.Google Scholar
  82. 82.
    M. S. Duesdery, et al., “The Plasticity of the Pure Niobium Single Crystals,” Journal of Physics, Vol. 27, No. 7–8, July to August, 1966, p. 193.Google Scholar
  83. 83.
    A. McClure, “Metal Fasteners in Ultra High Temperatures,” Machinery, Vol. 39, No. 4, February, 1967, P. 26.Google Scholar

Copyright information

© American Institute of Mining, Metallurgical, and Petrolium Engineers, Inc. 1968

Authors and Affiliations

  • R. G. Frank
    • 1
  1. 1.Refractory Metals Development, Nuclear Systems ProgramsGeneral Electric CompanyCincinnatiUSA

Personalised recommendations