Advertisement

Hydrogen Effects in Refractory Metals

  • W. T. Chandler
  • R. J. Walter

Abstract

The effects of hydrogen on the refractory metals molybdenum, tungsten, columbium, and tantalum are reviewed. Solubility, permeability, and diffusion of hydrogen in the refractory metals, refractory metal-hydrogen phase diagrams, and the effects of absorbed hydrogen and hydrogen environments on mechanical properties are covered. Molybdenum and tungsten have very low solubilities for hydrogen and are essentially unaffected by hydrogen. Columbium and tantalum can absorb large quantities of hydrogen and form hydrides, and are greatly embrittled by relatively small amounts of hydrogen at low temperatures. However, the solubility of hydrogen in columbium and tantalum decreases to low values above approximately l600 F (870 C), the hydrides are stable only at relatively low temperatures, and relatively large quantities of hydrogen are required to cause embrittlement at elevated temperatures. Embrittlement of columbium and tantalum by hydrogen at room temperature and below is usually associated with hydride formation. No investigations have been made of the mechanism of embrittlement by hydrogen at higher temperatures. Columbium and tantalum specimens will fragment when cooled from elevated temperatures in hydrogen or, under certain conditions, when exposed to hydrogen at room temperature.

Keywords

Hydrogen Absorption Hydrogen Content Hydrogen Embrittlement Refractory Metal Hydrogen Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, D. P., Hydrogen in Metals, University of Chicago Press, Chicago, Illinois (1948).Google Scholar
  2. 2.
    Cotterill, P., “The Hydrogen Embrittlement of Metals,” in Progress in Materials Science, Vol. 9, B. Chalmers, ed., Pergamon Press, New York (1961), p. 205.Google Scholar
  3. 3.
    Rylski, O. Z., Department of Mines and Technical Surveys, Mines Branch, Ottawa, Canada PM 203 (CAN).Google Scholar
  4. 4.
    Muehlenkamp, G. T. and A. D. Schwope, “Effect of Hydrogen on Mechanical Properties of Zirconium and Its Tin Alloys,” USAEC Rept. No. BMI 845 (1953).Google Scholar
  5. 5.
    Jaffee, R. I., G. A. Lenning, and C. M. Craighead, J. Metals, 8, 907 (1956).Google Scholar
  6. 6.
    Williams, D. N., F. R. Schwartzberg, and R. I. Jaffee, Trans. ASM, 51, 802 (1959).Google Scholar
  7. 7.
    Forscher, F., Trans. AIME, 206, 536 (l956).Google Scholar
  8. 8.
    Magnusson, A. W. and V. M. Baldwin, J. Mech. Phys. of Solids, 5, 172 (1957).Google Scholar
  9. 9.
    Johnson, H. H., “On Hydrogen Brittleness in High Strength Steel,” Paper to be published in Proceedings of the International Conference on Fundamental Aspects of Stress-Corrosion Cracking held at Ohio State University, Columbus, Ohio, from 11 to 15 September 1967, R. W. Staehle, ed.Google Scholar
  10. 10.
    Oriani, R. Α., “Hydrogen in Metals,” ibid.Google Scholar
  11. 11.
    Gibb, T. R. P., Jr., “Primary Solid Hydrides,” in Progress in Inorganic Chemistry, Vol. 3, F. A. Cotton, ed., Interscience Publishers, New York (1962), p. 315.Google Scholar
  12. 12.
    Sieverts, A. and K. Bruning, Arch. Eisenhüttnw., 7, 641 (1934).Google Scholar
  13. 13.
    Hill, M. L., J. Metals, 12, 725 (1960).Google Scholar
  14. 14.
    Martin, E., Arch. Eisenhiittenw, 3, 407 (1929).Google Scholar
  15. 15.
    Jones, P. M. S., R. Gibson and J. A. Evans, AWRE Report No. 0–16/66, Atomic Weapons Research Establishment, Aldermaston, England, February 1966.Google Scholar
  16. 16.
    Moore, G. E. and F. C. Unterwald, J. Chem. Phys., 40 (9), 2639 (1964).Google Scholar
  17. 17.
    Jones, D. W., N. Pessall, and A. D. McQuillan, Phil. Mag., 6, 455 (1961).Google Scholar
  18. 18.
    Jones, D. W. and A. D. McQuillan, J. Phys. Chem. Solids, 23, 1441 (1962).Google Scholar
  19. 19.
    Jones, D. W., Phil. Mag., 9, 709 (1964).Google Scholar
  20. 20.
    Booth, J. G., “Effect of Electron Concentration on Mechanical Properties of Alloys of Refractory Metals,” Annual Topical Report on Office of Naval Research Contract No. Nonr-3589-(00), 17 October 1963, ASTIA AD No. 421178.Google Scholar
  21. 21.
    Smithells, C. J. and C. E. Ransley, Proc. Roy. Soc, A, 150, 172 (1935).Google Scholar
  22. 22.
    Dushman, S., Scientific Foundations of Vacuum Technique, John Wiley and Sons, Inc., New York, 608 (1949).Google Scholar
  23. 23.
    Huffine, C. L. and J. M. Williams, Corrosion, 16, 432t (September 1960).Google Scholar
  24. 24.
    Norton, F. J., Hang xeko in Trans. Eighth Vacuum Symp., American Vacuum Soc, L. E. Preuss, ed., Pergamon Press, New York (1962), Vol. 1, p. 8.Google Scholar
  25. 25.
    Steigerwald, Ε. Α., “The Permeation of Hydrogen Through Materials for the Sunflower System,” Engineering Report ER-5623, Materials Technology, Tapco, A Division of Thompson Ramo Wooldridge Inc., Cleveland, Ohio (15 November 1963).Google Scholar
  26. 26.
    McCracken, G. M. and J. H. C. Maple, Brit. J. Appl. Phys., 18, 919 (1967).Google Scholar
  27. 27.
    Ryabchikov, L. Μ., Ukr. Fiz. Zhur., 9 (3), 293 (1964).Google Scholar
  28. 28.
    “High Temperature Materials and Reactor Component Development Programs,” GEMP-177A, Second Annual Report, Volume I — Materials, General Electric Company, Contract No. ΑΤ(40–1)-2847 (28 February 1963).Google Scholar
  29. 29.
    Conway, J. B., D. G. Salyards, W. L. McCullough, and P. N. Flagella, Paper presented at American Nuclear Society Meeting, Cincinnati, Ohio, 17–19 April 1963. NASA Doc. N64–11984 (1963).Google Scholar
  30. 30.
    “High Temperature Materials and Reactor Component Development Programs,” GEMP-270A, Third Annual Report, Volume I — Materials, General Electric Company, Cincinnati, Ohio, Contract No. AT(40–1)-2847 (28 February 1964).Google Scholar
  31. 31.
    Flagella, P. N., in Refractory Metals and Alloys III; Applied Aspects Part 2, AIME Metallurgical Society Conferences Vol. 30, R. I. Jaffee, ed., Gordon and Breach Science Publishers, New York (1966), p. 917.Google Scholar
  32. 32.
    Flagella, P. N., J. AIAA, 5, (2), 281 (1967).Google Scholar
  33. 33.
    Perkins, R. A. and J. L. Lytton, “Effect of Processing Variables on the Structure and Properties of Refractory Metals,” Technical Report No. AFML-TR-65–234, Part I, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio (July 1965).Google Scholar
  34. 34.
    Hahn, G. T., A. Gilbert, and R. I. Jaffee, “The Effects of Solutes on the Ductile-to-Brittle Transition in Refractory Metals,” DMIC Memorandum No. 155, 28 June 1962, and in Refractory Metals and Alloys, II, AIME Metallurgical Society Conferences Vol. 17, M. Semchyshen and I. Perlmutter, eds., Interscience Publishers, New York (1963), p. 23.Google Scholar
  35. 35.
    Lawley, Α., W. Liebmann, and R. Maddin, Acta Met., 9 (9), 841 (1961).Google Scholar
  36. 36.
    Feuerstein, S., in the Effects of Space Environment on Materials, Proceedings of National Symposium of Society of Aerospace Material and Process Engineers, St. Louis, Missouri, 19 to 21 April 1967, p. 2990Google Scholar
  37. 37.
    Hansen, Μ., Constitution of Binary Alloys, 807, McGraw-Hill, New York (1958).Google Scholar
  38. 38.
    Cupp, C. R., Progress in Metal Physics, 4, 105, Pergamon Press (1953).Google Scholar
  39. 39.
    Aitken, Ε. Α., P. K. Conn, E. C. Duderstadt, and R. E. Fryxell, “Measurement of the Permeability of Tungsten to Hydrogen and to Oxygen,” Final Report, NASA Contract NAS3–6216, NASA Report CR-54918 (May 1966) AEC Accession No. 27493.Google Scholar
  40. 40.
    Aitken, Ε. Α., Η. C. Brassfield, P. Κ. Conn, Ε. C. Buderstadt, and R. E. Fryxell, Trans. Met. Soc. AIME, 239 (l0), 1565 (1967).Google Scholar
  41. 41.
    Webb, R. W., “Permeation of Hydrogen Through Metals,” NAA-SR-10462, Atomics International, a Division of North American Aviation, Inc., 25 July 1965.Google Scholar
  42. 42.
    Frauenfelder, R., W. J. Lange, and J. H. Singleton, Semi-Annual Report — Ultrahigh Vacuum Techniques, Report WERL-2823–24, Westinghouse Research Laboratories, Pittsburgh, Pa., U.S.A.E.C. Contract No. AT(30–1)-2823 for period 1 June to 30 November 1966.Google Scholar
  43. 43.
    Meyers, C. L., Jr., G. Y. Onoda, Jr., A. V. Levy, and R. J. Kotfila, Trans. Met. Soc. AIME, 233 (4), 720 (1965).Google Scholar
  44. 44.
    Farrell, K., A. C. Schaffhauser, and J. O. Steigler, J. Less-Common Metals, 13 (5), 548 (1967).Google Scholar
  45. 45.
    Farrel, K., A. C. Schaffhauser, and J. O. Steigler, J. Less-Common Metals, 13 (2), 141 (1967).Google Scholar
  46. 46.
    Atkinson, R. H. and Staff of Metals Research Group, Westinghouse Lamp Division, WADD Technical Report 60–37, May 1960 (ASTIA AD240981).Google Scholar
  47. 47.
    Sell, H. G., G. H. Keith, R. C. Koo, R. H. Schnitzel, and R. Corth, Westinghouse Lamp Division, WADD Technical Report 60–37, Part II, May 1961 (ASTIA AD266330).Google Scholar
  48. 48.
    Atkinson, R. H., G. H. Keith, and R. C. Koo, “Tungsten and Tungsten-Base Alloys” in Refractory Metals and Alloys, AIME Metallurgical Society Conferences Vol. 11, M. Semchyshen and J. J. Harwood, eds., Interscience Publishers, New York (1961), p. 319.Google Scholar
  49. 49.
    Sutherland, E. C. and W. D. Klopp, “Observations of Properties of Sintered Wrought Tungsten Sheet at Very High Temperatures,” NASA Technical Note D-1310, February 1963.Google Scholar
  50. 50.
    Albrecht, W. M., W. D. Goode, and M. W. Mallett, J. Electrochem. Soc, 106 (11), 981 (1959).Google Scholar
  51. 51.
    Komjathy, S., J. Less-Common Metals, 2, 466 (1960).Google Scholar
  52. 52.
    Veleckis, Ε., Ph.D. Thesis, Illinois Institute of Technology, ASTIA AD282433, January 1960.Google Scholar
  53. 53.
    Makrides, A. C., M. Wright, and R. McNeill, “Hydrogen Permeation Through Group Vb Metals,” Final and Summary Report for Harry Diamond Laboratories Contract DA-49–186-AMC-136(d), Vol. I, Tyco Laboratories, Inc., Valtham, Massachusetts, October 1965.Google Scholar
  54. 54.
    Oakwood, T. G. and R. D. Daniels, “The Sorption Kinetics and Mechanical Properties of Dilute Columbium-Hydrogen Solutions,” University of Oklahoma, Report No. ORC-2570–10, AEC Contract No. AT(40–1)-2570, February 1967.Google Scholar
  55. 55.
    Perminov, P. S., Doklady Akad. Nauk SSSR (Proceedings of the Academy of Sciences USSR) 221, 1041 (1958).Google Scholar
  56. 56.
    Walter, R. J. and J. A. Ytterhus, “Behavior of Columbium and Tantalum in Hydrogen Environments,” Research Report RR 67–7, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, September 1967.Google Scholar
  57. 57.
    Walter, R. J., “The Columbium-Hydrogen System and Hydrogen Embrittlement of Columbium,” Research Report RR 64–6, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, February 1964.Google Scholar
  58. 58.
    Stephens, J. R. and R. G. Garlick, “Compatibility of Tantalum, Columbium and Their Alloys with Hydrogen in the Presence of Temperature Gradient,” NASA Technical Note D-3546, August 1966.Google Scholar
  59. 59.
    Walter, R. J. and W. T. Chandler, Trans. Met. Soc. AIME, 233, 762 (1965).Google Scholar
  60. 60.
    Brauer, G. and R. Herman, Ζ. Anorg. Chem., 274, 11 (l953).Google Scholar
  61. 61.
    Wainwright, C., A. J. Cook, and B. E. Hopkins, J. Less-Common Metals, 6, 362 (1964).Google Scholar
  62. 62.
    Paxton, H. W., J. M. Sheehan, and W. J. Babyak, Trans. AIME, 215, 725 (1959).Google Scholar
  63. 63.
    Rauch. G. C., R. M. Rose, and J. Wulff, J. Less-Common Metals, 8, 99 (1965).Google Scholar
  64. 64.
    Benson, R. B., Jr., “The Ductile-Brittle Transition in the Niobium-Hydrogen System,” Ph.D. Thesis, University of California, Berkeley, Diss. Abstr. B 27 (8), 2729 (1967) Order No. 66–15,345.Google Scholar
  65. 65.
    Westlake, D. G., Trans. Met. Soc. AIME, 239, 116 (1967).Google Scholar
  66. 66.
    Upadhyaya, G. S. and A. D. McQuillan, Trans. Met. Soc, AIME, 224, 1290 (1962).Google Scholar
  67. 67.
    Rudd, D. W., D. W. Vose, and S. Johnson, J. Phys. Chem., 66, 351 (1962).Google Scholar
  68. 68.
    Gulbransen, E. A. and K. F. Andrew, Trans. AIME, 188, 586 (l950).Google Scholar
  69. 69.
    Gulbransen, E. A. and K. F. Andrew, J. Electrochem. Soc, 101, 348 (1954).Google Scholar
  70. 70.
    Walter, R. J., J. A. Ytterhus, R. D. Lloyd, and W. T. Chandler, “Effect of Water Vapor/Hydrogen Environments on Columbium Alloys,” Technical Report No. AFML-TR-66–322, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, December 1966.Google Scholar
  71. 71.
    Walter, R. J. and W. T. Chandler, J. AIAA, 4 (2), 302 (1966).Google Scholar
  72. 72.
    Walter, R. J., “Compatiblity of Tantalum and Columbium Alloys with Hydrogen,” Research Report RR 65–3, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, February 1965.Google Scholar
  73. 73.
    McCoy, H. E. and D. A. Douglas, in Columbium Metallurgy, D. L. Douglass and F. W. Kunz, eds., Interscience Publishers, New York (1961), p. 85.Google Scholar
  74. 74.
    Wilcox, B. A. and R. A. Huggins, J. Less-Common Metals, 2, 292 (1960).Google Scholar
  75. 75.
    Wilcox, B. A. and R. A. Huggins., in Co lumbium Metallurgy, D. L. Douglass and F. W. Kunz, eds., Interscience Publishers, New York (1961), p. 257.Google Scholar
  76. 76.
    Wilcox, B. A. and R. A. Huggins, “The Effect of Interstitial Atom-Dislocation Interactions on the Deformation Behavior of Columbium, Tantalum, and 1020 Steel,” Technical Documentary Report No. ASD-TR-61–351, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio, February 1962.Google Scholar
  77. 77.
    Petch, N. J., J. Iron Steel Inst., 174 25 (1953).Google Scholar
  78. 78.
    Christian, J. W. and B. C. Masters, Proc. Roy. Soc., A, 281, 223 (1964).Google Scholar
  79. 79.
    Armstrong, R. W., “Strengthening Mechanisms and Brittleness in Metals,” Paper Presented at Symposium on Materials — Key to Effective Use of the Sea, New York, September 1967.Google Scholar
  80. 80.
    Armstrong, R. W., “Grain Boundary Strengthening and the Polycrystal Deformation Rate,” in Dislocation Dynamics, McGraw-Hill Book Co., New York (1968), p. 293.Google Scholar
  81. 81.
    Wilcox, G. A., A. W. Brisbane, and R. F. Klinger, “The Effects of Strain Rate and Hydrogen Content on the Low Temperature Deformation Behavior of Columbium,” Technical Report No. WADD-TR-61–44, Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio, May 1961.Google Scholar
  82. 82.
    Wilcox, B. A., A. W. Brisbane, and R. F. Klinger, Trans. ASM, 55, 179 (1962).Google Scholar
  83. 83.
    Imgram, A. G., E. S. Bartlett, and H. R. Ogden, Trans. Met. Soc. AIME, 227, 131 (1963).Google Scholar
  84. 84.
    Wood, T. W. and R. D. Daniels, Trans. Met. Soc. AIME, 233, 898 (1965).Google Scholar
  85. 85.
    Longson, B., United Kingdom Atomic Energy Authority, TRG Report No. 1035 (c), (1966).Google Scholar
  86. 86.
    Keh, A. S. and S. Weissman, in Electron Microscopy and the Strength of Crystals, G. Thomas and J. Washburn, eds., Interscience Publishers, New York (1963), p. 881.Google Scholar
  87. 87.
    VanTorne, L. I. and G. Thomas, Acta Met. 11, 881 (1963).Google Scholar
  88. 88.
    Eustice, A. L. and O. H. Carlson, Trans. ASM, 53, 501 (1961).Google Scholar
  89. 89.
    Imgram, A. G., E. S. Bartlett, H. R. Ogden et al, “Further Investigation of Notch Sensitivity of Refractory Metals,” Technical Documentary Report No. ML-TDR-64–35, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, February 1964.Google Scholar
  90. 90.
    Roberts, B. W. and M. C. Rogers, J. Metals, 8, 1213 (1956).Google Scholar
  91. 91.
    Eustice, A. L. and O. H. Carlson, Trans. Met. Soc. AIME, 221, 238 (1961).Google Scholar
  92. 92.
    Nunes, J., A. A. Anctil, and E. B. Kula, “Low Temperature Flow and Fracture Behavior of Tantalum,” Technical Report AMRA TR-64–22, U.S. Army Materials Research Agency, Watertown, Massachusetts, August 1964.Google Scholar
  93. 93.
    Wood, T. W. and R. D. Daniels, J. Met., 13, 83 (1961).Google Scholar
  94. 94.
    Ytterhus, J. A. and R. J. Walter, “Mechanisms of Hydrogen Embrittlement of Columbium,” Report R-6134P, Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, April 1965.Google Scholar
  95. 95.
    Westlake, D. G., “The Ductile-Brittle-Ductile Transition in Nb-H and V-H Alloys,” paper presented at AIME Annual Meeting, New York, 29 February 1968, abstract in J. Metals, 20 (1), 114A (1968).Google Scholar
  96. 96.
    Thompson, S. R., W. R. Young, and W. H. Kearns, “Investigation of the Structural Stability of Welds in Columbium Alloys,” Technical Report ML-TDR-64–210, Part II, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, April 1966.Google Scholar
  97. 97.
    Kieger, R., A. Clause, and H. Forestier, Mem. Sci. Rev. Met. 64 (2), 195 (1967).Google Scholar
  98. 98.
    Bentle, G. and W. T. Chandler, “Effects of Hydrogen Environments on Columbium and Tantalum Alloys,” Quarterly Report for period 1 August 1967 to 31 October 1967 for Air Force Contract AF33(615)-2854, Rocketdyne, a Division of North American Rockwell Corporation, Report No. R-7076–3, December 1967.99. Sieverts, A. and E. Bergner, Ber. deut. chem. Ges., 44, 2394 (1911).Google Scholar
  99. 100.
    Kofstad, P., W. E. Wallace, and L. J. Hyvönen, J. Am. Chem. Soc., 81, 5015 (1959).Google Scholar
  100. 101.
    Mallett, M. W. and B. G. Koehl, J. Electrochem. Soc, 109, 611 (1962).Google Scholar
  101. 102.
    Elliott, R. P., Constitution of Binary Alloys, First Supplement, McGraw-Hill Book Company, New York, 1965.Google Scholar
  102. 103.
    Kelly, K. K., J. Chem. Phys., 8, 316 (1940).Google Scholar
  103. 104.
    Waite, T. R., W. E. Wallace, and R. S. Craig, J. Chem. Phys., 24, 634 (1956).Google Scholar
  104. 105.
    Hägg, G., Ζ. Physik. Chem., B11, 433 (193l).Google Scholar
  105. 106.
    Pietsch, E. and H. Lehl, Kolloidz., 68, 226 (1934).Google Scholar
  106. 107.
    Horn, F. H. and V. T. Ziegler, J. Am. Chem. Soc., 69, 2762 (1947).Google Scholar
  107. 108.
    Stalinski, B., Bull. Acad. Polon. Sci. 2, 245 (1954).Google Scholar
  108. 109.
    Bakish, R., J. Electrochem. Soc., 105, 574 (1958).Google Scholar
  109. 110.
    Saba, W. G., W. E. Wallace, H. Sandmo, and R. S. Craig, J. Chem. Phys., 35, 2148 (1961).Google Scholar
  110. 111.
    Pedersen, B., T. Krogdahl, and O. E. Stokkeland, J. Chem. Phys., 42 (1), 72 (1965).Google Scholar
  111. 112.
    Wright, M., D. Jewett, and A. C. Makrides, “Research Studies on Solid Hydrogen Purification Membranes,” Report Covering Period from 15 June 1965 to 15 April 1960, on U.S. Army Engineer Contract No. DA44–009-AMC-1183(Τ), Tyco Laboratories, Inc., Waltham, Massachusetts, April 1966.Google Scholar
  112. 113.
    Mallett, M. W. and B. G. Koehl, J. Electrochem. Soc., 109, 968 (1962).Google Scholar
  113. 114.
    Wasilewski, R. J. and G. L. Kehl, Metallurgia Manchester, 50, 225 (1954).Google Scholar
  114. 115.
    Mallett, M. W. and W. M. Albrecht, J. Electrochem. Soc, 104, 142 (1957).Google Scholar
  115. 116.
    Zubler, E. G., J. Electrochem. Soc, 110 1072 (1963).Google Scholar
  116. 117.
    Klyachko, Yu. A., L. L. Kurin, S. P. Fedorov, and I. N. Larionov, Trudy Komissii Anal. Khim., Akad. Nauk S.S.S.R., Inst. Geokhim. i Anal. Khim. im. V. I. Vernadskogo 10, 49 (1960).Google Scholar
  117. 118.
    Merisov, B. A., V. I. Khotkevich, and A. I. Karnus, Phys. Metal. Metallography, 22 (2), 308 (1966).Google Scholar
  118. 119.
    Abowitz, G. and R. A. Burn, “The Mechanical Properties of Tantalum with Special Reference to the Ductile-Brittle Transition,” Technical Report No. ASD-TR-61–203, Part III, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, May 1963.Google Scholar
  119. 120.
    Gazza, G. E., “Petch Analysis of Hydrogenated Columbium Sheet,” Technical Report AMRA TR-66–10, U.S. Army Materials Research Agency, Watertown, Massachusetts, May 1966.Google Scholar
  120. 121.
    Owen, W. S., D. C. Hull, J. Bryson, and C. L. Formby, Technical Report AFML-TR-66–369, Vol. I, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, February 1967.Google Scholar
  121. 122.
    Wilcox, B. A., Trans. Met. Soc. AIME, 230, 1199 (1964).Google Scholar
  122. 123.
    Bentle, G. and W. T. Chandler, “Effects of Hydrogen Environments on Columbium and Tantalum Alloys,” Quarterly Report for period 1 November 1967 to 31 January 1968 for Air Force Contract AF33(6l5)-2854, Rocketdyne, a Division of North American Rockwell Corporation Report No. R-7067–4, February 1968.Google Scholar

Copyright information

© American Institute of Mining, Metallurgical, and Petrolium Engineers, Inc. 1968

Authors and Affiliations

  • W. T. Chandler
    • 1
  • R. J. Walter
    • 1
  1. 1.Division of North American Rockwell CorporationCanoga ParkUSA

Personalised recommendations