Advertisement

High Temperature Creep and Fracture Behavior of the Refractory Metals

  • R. T. Begley
  • D. L. Harrod
  • R. E. Gold

Abstract

The creep properties of the pure, polycrystalline refractory metals are reviewed and summarized. The creep behavior of all the pure metals is correlated in terms of their diffusivities and elastic moduli following the Sherby-type analysis. Experimental values of the activation energy and stress dependence of creep are also summarized for the pure metals, and the structural features of deformation and fracture are described. The general effects of alloying are delineated in terms of solid solution, dispersed phase, and strain hardening contributions to high temperature creep strength.

Keywords

Creep Rate Refractory Metal Creep Strength Creep Property High Temperature Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Pollack, R. W. Buckman, R. T. Begley, K. C. Thomas and E. C. Bishop, “Development of High Strength Vanadium Alloys”, Final Report, AEC Contract AT(30–1) — 3487, Westinghouse Electric Corp., June, 1967Google Scholar
  2. 2.
    H. Bohm and M. Schirra, “Investigations of the Stress-Rupture and Creep Behavior of Binary and Ternary Vanadium Alloys”, J. Less Common Metals, 12, 1967, pp. 280–293CrossRefGoogle Scholar
  3. 3.
    G. Brinson and B. B. Argent, “The Creep of Niobium”, J. Inst. of Metals, 91, 1962–63, pp. 293–298Google Scholar
  4. 4.
    J. D.W. Rawson and B. B. Argent, “The Effect of Oxygen and Carbon on the Creep Strength of Niobium”, J. Inst. of Metals, 95, 1967, pp. 212–216Google Scholar
  5. 5.
    W. V. Green, “High-Temperature Creep of Tantalum,” Trans AIME, October, 1965, pp. 1818–1825Google Scholar
  6. 6.
    R. L. Stephenson, “Creep-Rupture Properties of Unalloyed Tantalum, Ta-10%W and T-111 Alloys”, ORNL-TM-1994, December, 1967Google Scholar
  7. 7.
    C. S. Landau, H. T. Greenaway and A. R. Edwards, “Properties of Chromium and Chromium-Tungsten Alloys”, J. Inst. of Metals, 89, 1960–61, pp. 97–101Google Scholar
  8. 8.
    J. W. Pugh, “The Tensile and Stress-Rupture Properties of Chromium” Trans ASM, 50, 1958, pp. 1072–1080Google Scholar
  9. 9.
    J. B. Conway and P. N. Flagella (and others), Progress Reports on AEC Fuels and Materials Development Program, GE-NMPO, Cincinnati, Ohio, 1961–1967Google Scholar
  10. 10.
    W. V. Green, M. G Smith and D.M. Olson, “Short-Time Creep-Rupture Behavior of Molybdenum at High Temperatures”, Trans AIME, 215, 1959, pp. 1061–1066Google Scholar
  11. 11.
    H. Carvalhinhos and B. B. Argent, “The Creep of Molybdenum”, J. Inst, of Metals, 95, 1967, pp. 364–368Google Scholar
  12. 12.
    W. D. Klopp, W. R. Witzke and P. L. Raffo, “Effects of Grain Size on Tensile and Creep Properties of Arc-Melted and Electron-Beam-Melted Tungsten at 2250° to 4140°F”, Trans AIME, 233, 1966, pp. 1860–1866Google Scholar
  13. 13.
    W. V. Green, “Short-Time Creep-Rupture Behavior of Tungsten at 2250 to 2800°C,” Trans AIME, 215, 1959, pp. 1057–1060Google Scholar
  14. 14.
    E. R. Gilbert, J. E. Flinn and F. L. Yaggee, “Multimechanism Behavior in the Creep of Tungsten”, Paper Presented at the Fourth Symposium on Refractory Metals, French Lick, Indiana, October 3–5, 1965, to be publishedGoogle Scholar
  15. 15.
    H. E. McCoy, “Creep-Rupture Properties of W and W-Base Alloys,” ORNL-3992, August, 1966Google Scholar
  16. 16.
    J. H. Bechtold, E. T. Wessel and L. L. France, “Mechanical Behavior of the Refractory Metals”, Refractory Metals and Alloys, AIME Metall. Soc. Conferences, Volume 11, 1960, pp. 25–81Google Scholar
  17. 17.
    O. D. Sherby, “Factors Affecting the High Temperature Strength of Polycrys-talline Solids”, Acta Met, 10, 1962, pp. 135–147CrossRefGoogle Scholar
  18. 18.
    P. E. Armstrong and H. L. Brown, “Dynamic Young’s Modulus Measurements Above 1000°C on Some Pure Polycrystalline Metals and Commercial Graphites”, Trans AIME, 230, 1964, pp. 962–966Google Scholar
  19. 19.
    P. E. Armstrong and H. L. Brown, “Anomalous Temperature Dependence of Elastic Moduli of Niobium Metal”, Trans ASM, 58, 1965, pp. 30–37Google Scholar
  20. 20.
    R. P. Agarwala, S. P. Murarka and M. S. Anand, “Diffusion of Vanadium in Niobium, Zirconium and Vanadium”, Acta Met, 16, 1968, pp. 61–67CrossRefGoogle Scholar
  21. 21.
    T. S. Lundy, F. R. Winslow, R. E. Pawel and C.J. McHargue, “Diffusion of Nb-95 and Ta-182 in Niobium (Columbium)”, Trans AIME, 233, 1965, pp. 1533–1539Google Scholar
  22. 22.
    R. E. Pawel and T. S. Lundy, “The Diffusion of Nb95 and Ta182 in Tantalum”, J. Phys Chem Solids, 26, 1965, pp. 937–942CrossRefGoogle Scholar
  23. 23.
    J. Askill, “Self-Diffusion in Chromium”, Diffusion in Body-Centered Cubic Metals, Chapter 18, ASM, Metals Park, Ohio, 1965Google Scholar
  24. 24.
    J. Askill and D.H. Tomlin, “Self-Diffusion in Molybdenum”, Phil Mag, 8, 1963, pp. 997–1001CrossRefGoogle Scholar
  25. 25.
    R. L. Andelin, J. D. Knight and M. Kahn, “Diffusion of Tungsten and Rhenium Tracers in Tungsten”, Trans AIME, 233, 1965, pp. 19–24Google Scholar
  26. 26.
    O. D. Sherby and P. M. Burke, “Mechanical Behavior of Crystalline Solids at Elevated Temperature”, First Technical Report to NASA (SC-NGR-05–020–084) August 1, 1967Google Scholar
  27. 27.
    J. Stoop and P. Shahinian, “Effect of Oxygen on Creep-Rupture of Niobium”, High Temperature Refractory Metals, Part 2, AIME Metallurgical Society Conferences, Volume 34, 1966, pp. 407–432Google Scholar
  28. 28.
    D. P. Gregory and G. H. Rowe, “Mechanisms of Creep in Columbium and Columbium-1% Zirconium Alloy”, Columbium Metallurgy, AIME Metallurgical Society Conferences, Volume 10, 1960, pp. 309–341Google Scholar
  29. 29.
    J. E. Flinn and E. R. Gilbert, “Discussion of High Temperature Creep of Tantalum”, Trans AIME, 236, 1966, pp. 1512–1513Google Scholar
  30. 30.
    G. W. King and H. G. Sell, “The Effect of Thoria on the Elevated-Temperature Tensile Properties of Recrystallized High-Purity Tungsten”, Trans AIME, 233, 1965, pp. 1104–1113Google Scholar
  31. 31.
    J. W. Pugh, “Tensile and Creep Properties of Tungsten at Elevated Temperatures”, Proc ASTM, 57, 1957, pp. 906–915Google Scholar
  32. 32.
    C. R. Barrett and W. D. Nix, “A Model for Steady State Creep Based on the Motion of Jogged Screw Dislocations”, Acta Met, 13, 1965, pp. 1247–1258CrossRefGoogle Scholar
  33. 33.
    W. F. Sheely, “Mechanical Properties of Niobium-Oxygen Alloys”, J. Less Common Metals, 4, 1962, pp. 487–495CrossRefGoogle Scholar
  34. 34.
    F.F. Schmidt, W. D. Klopp, W.M. Albrecht, F. C. Holden, H. R. Ogden and R. I. Jaffee, “Investigation of the Properties of Tantalum and Its Alloys”, WADD Technical Report 59–13, March, 1960Google Scholar
  35. 35.
    H. E. McCoy and D. A. Douglas, “Effect of Various Gaseous Contaminants on the Strength and Formability of Columbium”, Columbium Metallurgy, AIME Metallurgical Society Conferences, Volume 10, 1960, pp. 85–118Google Scholar
  36. 36.
    R. W. Armstrong, J. H. Bechtold and R. T. Begley, “Mechanisms of Alloy Strengthening in Refractory Metals” Refractory Metals and Alloys II, AIME Metallurgical Society Conferences, Volume 17, 1963, pp. 159–190Google Scholar
  37. 37.
    W. H. Chang, “Strengthening of Refractory Metals”, Refractory Metals and Alloys, AIME Metallurgical Society Conferences, Volume 11, 1961, pp. 83–117Google Scholar
  38. 38.
    G. D. McAdam, “Substitutional Niobium Alloys of High Creep Strength”, J. Inst, of Metals, 93, 1964–65, pp. 559–564Google Scholar
  39. 39.
    E. S. Bartlett, D. N. Williams, H. R. Ogden, R. I. Jaffee and E. F. Bradley, “High-Temperature Solid-Solution-Strengthened Columbium Alloys”, Trans AIME, 227, 1963, pp. 459–467Google Scholar
  40. 40.
    C. S. Hartley, J. E. Steedly and L. D. Parson, “Binary Interdiffusion in Body-Centered Cubic Transition Metal Systems”, Diffusion in Body-Centered Cubic Metals, Chapter 4, ASM, Metals Park, Ohio, 1965Google Scholar
  41. 41.
    W. H. Chang, “Influence of Heat Treatment on Microstructure and Properties of Columbium-Base and Chromium-Base Alloys”, ASD-TDR-62–211, Part IV, March, 1966Google Scholar
  42. 42.
    R. F. Peart and D. H. Tomlin, “Diffusion of Solute Elements in Beta-Titanium”, Acta Met, 10, 1962, pp. 123–134CrossRefGoogle Scholar
  43. 43.
    G. B. Gibbs, D. Graham and D. H. Tomlin, “Diffusion in Titanium and Titanium-Niobium Alloys”, Phil Mag, 8, 1963, pp. 1269–1282CrossRefGoogle Scholar
  44. 44.
    V. P. Lubinov, P. V. Geld and G. P. Shveykin, Isv. Akad. Nauk SSSR, Met i Gorn, Delo 5, 137, 1964Google Scholar
  45. 45.
    P. V. Geld, Z. Ya. Velmozhnyi, V. D. Lubinov and G. P. Shveykin, Isv. Vysshikh Uchehn. Zavedenic Tsvetn, Met. 2, 135, 1966Google Scholar
  46. 46.
    R. W. Buckman, Jr. and R. C. Goods peed, “Considerations in the Development of Tantalum Base Alloys,” This VolumeGoogle Scholar
  47. 47.
    E. S. Bartlett, F. F. Schmidt and H. R. Ogden, “Properties of Ta-W-Mo Alloys”, High Temperature Refractory Metals, Part 2, AIME Metallurgical Society Conferences, Volume 34, 1966, pp. 326–345Google Scholar
  48. 48.
    H. T. Greenaway, “Creep Testing of Chromium Alloys”, Report ARL/Met. 55, Aeronautical Research Laboratories, Melbourne, Australia, October, 1964Google Scholar
  49. 49.
    J. W. Clark and C. S. Wukusick, Preliminary Information Reported by General Electric Co., Evendale, Ohio, Under a NASA Contract (cited in Ref. 50, p. 12)Google Scholar
  50. 50.
    D. J. Maykuth and A. Gilbert, “Chromium and Chromium Alloys”, DMIC Report 234, October 1, 1966Google Scholar
  51. 51.
    M. Semchyshen, “Development and Properties of Arc-Cast Molybdenum-Base Alloys”, The Metal Molybdenum, (Edited by J.J. Harwood), Chapter 14, ASM, Cleveland, Ohio, 1958Google Scholar
  52. 52.
    P. L. Raffo, W. D. Klopp and W. R. Witzke, “Mechanical Properties of Arc-Melted and Electron-Beam-Melted Tungsten-Base Alloys”, NASA TN D-2561, January, 1965Google Scholar
  53. 53.
    W. D. Klopp, W. R. Witzke and P. L. Raffo, “Mechanical Properties of Dilute Tungsten-Rhenium Alloys”, NASA TN D-3483, September, 1966Google Scholar
  54. 54.
    P. L. Raffo and W. D. Klopp, “Mechanical Properties of Solid-Solution and Carbide-Strengthened Arc-Melted Tungsten Alloys”, NASA TN D-3248, February, 1966Google Scholar
  55. 55.
    L.L. Seigle, “Structural Considerations in Developing Refractory Metal Alloys”, The Science and Technology of Selected Refractory Metals, (Edited by N. E. Promisel) AGARD Conference on Refractory Metals held in Oslo, Norway, June 23–26, 1963, pp. 63–93Google Scholar
  56. 56.
    R. T. Begley and J. H. Bechtold, “Effect of Alloying on the Mechanical Properties of Niobium”, J. Less Common Metals, 3, 1961, pp. 1–12CrossRefGoogle Scholar
  57. 57.
    R. T. Begley, J. A. Cornie and R. C. Goodspeed, “Development of Columbium Base Alloys”, AFML-TR-67–116, November, 1967Google Scholar
  58. 58.
    G. D. McAdam, “The Influence of Carbide and Boride Additions on the Creep Strength of Niobium Alloys”, J. Inst. of Metals, 96, 1968, pp. 13–16Google Scholar
  59. 59.
    N. E. Ryan, “The Formation, Stability and Influence of Carbide Dispersions in Chromium”, J. Less Common Metals, 11, 1966, pp. 221–248CrossRefGoogle Scholar
  60. 60.
    L S. Rubenstein, “Effects of Composition and Heat Treatment on High-Temperature Strength of Arc-Melted Tungsten-Hafnium-Carbon Alloys, NASA TN D-4379, February, 1968Google Scholar
  61. 61.
    R. T. Begley, J. L. Godshall and R. Stickler, “Precipitation Hardening Columbium-Hafnium-Nitrogen Alloys”, Fifth Plansee Seminar, June 22–26, 1964, Reutte/Tyrol, pp. 401–420Google Scholar
  62. 62.
    A. K. Mukherjee and J. W. Martin, “The Effect of Nitriding upon the Creep Properties of Some Molybdenum Alloys”, J. Less Common Metals, 5, 1963, pp. 403–410CrossRefGoogle Scholar
  63. 63.
    A. C. Barber and P. H. Morton, “A Study of the Niobium-Zirconium-Carbon and Niobium-Zirconium-Oxygen Systems”, High Temperature Refractory Metals, Part 2, AIME Metallurgical Society Conferences, Volume 34, 1966, pp. 391–406Google Scholar
  64. 64.
    D. O. Hobson, “Aging Phenomena in Columbium-Base Alloys”, High Temperature Materials II, AIME Metallurgical Society Conferences, Volume 18, 1963, pp. 325–334Google Scholar
  65. 65.
    J. R. Stewart, W. Lieberman and G. H. Rowe, “Recovery and Recrystallization of Columbium-1% Zirconium Alloy”, Columbium Metallurgy, AIME Metallurgical Society Conferences, Volume 10, 1960, pp. 407–434Google Scholar
  66. 66.
    R. T. Begley, R. L. Ammon and R. Stickler, “Development of Niobium Base Alloys”, WADC TR 57–344, Part VI, February, 1963Google Scholar
  67. 67.
    R. M. Bonesteel, J. L Lytton, D.J. Rowcliffe and T. E. Tietz, “Recovery and Internal Oxidation of Columbium and Columbium Alloys”, AFML-TR-66–253, August, 1966Google Scholar
  68. 68.
    R. W. Buckman, Jr., Unpublished Research on Studies of Internally Oxidized T-111 Alloy, Westinghouse Astronuclear LaboratoryGoogle Scholar
  69. 69.
    R. W. Buckman, Jr., “Operation of Ultra High Vacuum Creep Testing Laboratory”, Transactions Vacuum Metallurgy Conference, 1966, American Vacuum Society, 1967, pp. 25–37Google Scholar
  70. 70.
    R. W. Buckman, Jr. and R. C. Goodspeed, Unpublished Research, Westinghouse Astronuclear LaboratoryGoogle Scholar
  71. 71.
    R. H. Titran and R. W. Hall, “Ultrahigh-Vacuum Creep Behavior of Columbium and Tantalum Alloys at 2000° and 2200°F for Times Greater Than 1000 Hours”, NASA TN D-3222, January, 1966Google Scholar
  72. 72.
    TRW, Inc., “Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures”, Final Report on Contract NAS 3–2545, June 6, 1967Google Scholar
  73. 73.
    R. A. Perkins, “Effect of Processing Variables on the Structure and Properties of Refractory Metals”, AFML-TR-65–234, Part II, May, 1967Google Scholar
  74. 74.
    R. T. Begley and J. A. Cornie, Unpublished Research, Westinghouse Astronuclear LaboratoryGoogle Scholar
  75. 75.
    H. G. Sell, W. R. Morcom and G. W. King, “Development of Dispersion Strengthened Tungsten Base Alloys”, AFML-TR-65–407, Part II, November, 1966Google Scholar
  76. 76.
    R. T. Begley and J. L. Godshall, “Some Observations on the Role of Grain Boundaries in High Temperature Deformation and Fracture of Refractory Metals”, Paper Presented at the Fourth Symposium on Refractory Metals, French Lick, Indiana, October 3–5, 1965Google Scholar
  77. 77.
    E. Rudy and others, Aerojet-General Corporation, “Ternary Phase Equilibria in Transition MetaI-Boron-Carbon-SiIicon Systems”, AFML-TR-65–2, 1965–66Google Scholar
  78. 78.
    R. W. Buckman, Jr. and R. C. Goodspeed, “Development of Dispersion Strengthened Tantalum Base Alloy”, Sixth Quarterly Report on Contract NAS 3–2542, NAS CR-54658Google Scholar
  79. 79.
    R. N. Stevens, “Grain Boundary Sliding in Metals”, Metallurgical Reviews, 11, 1966, pp. 129–142Google Scholar
  80. 80.
    R. C. Gifkins, Fracture, (Edited by B. L. Averback, D. S. Felbeck, G. T. Hahn and D. A. Thomas), Technology Press and J. Wiley and Sons, New York, 1959Google Scholar
  81. 81.
    B. A. Wilcox, A. Gilbert and B. C. Allen, “Intermediate-Temperature Ductility and Strength of Tungsten and Molybdenum TZM”, AFML-TR-66–89, April, 1966Google Scholar

Copyright information

© American Institute of Mining, Metallurgical, and Petrolium Engineers, Inc. 1968

Authors and Affiliations

  • R. T. Begley
    • 1
  • D. L. Harrod
    • 1
  • R. E. Gold
    • 1
  1. 1.Westinghouse Astronuclear LaboratoryPittsburghUSA

Personalised recommendations