Skip to main content

High Temperature Creep and Fracture Behavior of the Refractory Metals

  • Conference paper
Refractory Metal Alloys Metallurgy and Technology

Abstract

The creep properties of the pure, polycrystalline refractory metals are reviewed and summarized. The creep behavior of all the pure metals is correlated in terms of their diffusivities and elastic moduli following the Sherby-type analysis. Experimental values of the activation energy and stress dependence of creep are also summarized for the pure metals, and the structural features of deformation and fracture are described. The general effects of alloying are delineated in terms of solid solution, dispersed phase, and strain hardening contributions to high temperature creep strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Pollack, R. W. Buckman, R. T. Begley, K. C. Thomas and E. C. Bishop, “Development of High Strength Vanadium Alloys”, Final Report, AEC Contract AT(30–1) — 3487, Westinghouse Electric Corp., June, 1967

    Google Scholar 

  2. H. Bohm and M. Schirra, “Investigations of the Stress-Rupture and Creep Behavior of Binary and Ternary Vanadium Alloys”, J. Less Common Metals, 12, 1967, pp. 280–293

    Article  Google Scholar 

  3. G. Brinson and B. B. Argent, “The Creep of Niobium”, J. Inst. of Metals, 91, 1962–63, pp. 293–298

    Google Scholar 

  4. J. D.W. Rawson and B. B. Argent, “The Effect of Oxygen and Carbon on the Creep Strength of Niobium”, J. Inst. of Metals, 95, 1967, pp. 212–216

    Google Scholar 

  5. W. V. Green, “High-Temperature Creep of Tantalum,” Trans AIME, October, 1965, pp. 1818–1825

    Google Scholar 

  6. R. L. Stephenson, “Creep-Rupture Properties of Unalloyed Tantalum, Ta-10%W and T-111 Alloys”, ORNL-TM-1994, December, 1967

    Google Scholar 

  7. C. S. Landau, H. T. Greenaway and A. R. Edwards, “Properties of Chromium and Chromium-Tungsten Alloys”, J. Inst. of Metals, 89, 1960–61, pp. 97–101

    Google Scholar 

  8. J. W. Pugh, “The Tensile and Stress-Rupture Properties of Chromium” Trans ASM, 50, 1958, pp. 1072–1080

    Google Scholar 

  9. J. B. Conway and P. N. Flagella (and others), Progress Reports on AEC Fuels and Materials Development Program, GE-NMPO, Cincinnati, Ohio, 1961–1967

    Google Scholar 

  10. W. V. Green, M. G Smith and D.M. Olson, “Short-Time Creep-Rupture Behavior of Molybdenum at High Temperatures”, Trans AIME, 215, 1959, pp. 1061–1066

    CAS  Google Scholar 

  11. H. Carvalhinhos and B. B. Argent, “The Creep of Molybdenum”, J. Inst, of Metals, 95, 1967, pp. 364–368

    CAS  Google Scholar 

  12. W. D. Klopp, W. R. Witzke and P. L. Raffo, “Effects of Grain Size on Tensile and Creep Properties of Arc-Melted and Electron-Beam-Melted Tungsten at 2250° to 4140°F”, Trans AIME, 233, 1966, pp. 1860–1866

    Google Scholar 

  13. W. V. Green, “Short-Time Creep-Rupture Behavior of Tungsten at 2250 to 2800°C,” Trans AIME, 215, 1959, pp. 1057–1060

    CAS  Google Scholar 

  14. E. R. Gilbert, J. E. Flinn and F. L. Yaggee, “Multimechanism Behavior in the Creep of Tungsten”, Paper Presented at the Fourth Symposium on Refractory Metals, French Lick, Indiana, October 3–5, 1965, to be published

    Google Scholar 

  15. H. E. McCoy, “Creep-Rupture Properties of W and W-Base Alloys,” ORNL-3992, August, 1966

    Google Scholar 

  16. J. H. Bechtold, E. T. Wessel and L. L. France, “Mechanical Behavior of the Refractory Metals”, Refractory Metals and Alloys, AIME Metall. Soc. Conferences, Volume 11, 1960, pp. 25–81

    CAS  Google Scholar 

  17. O. D. Sherby, “Factors Affecting the High Temperature Strength of Polycrys-talline Solids”, Acta Met, 10, 1962, pp. 135–147

    Article  CAS  Google Scholar 

  18. P. E. Armstrong and H. L. Brown, “Dynamic Young’s Modulus Measurements Above 1000°C on Some Pure Polycrystalline Metals and Commercial Graphites”, Trans AIME, 230, 1964, pp. 962–966

    CAS  Google Scholar 

  19. P. E. Armstrong and H. L. Brown, “Anomalous Temperature Dependence of Elastic Moduli of Niobium Metal”, Trans ASM, 58, 1965, pp. 30–37

    CAS  Google Scholar 

  20. R. P. Agarwala, S. P. Murarka and M. S. Anand, “Diffusion of Vanadium in Niobium, Zirconium and Vanadium”, Acta Met, 16, 1968, pp. 61–67

    Article  CAS  Google Scholar 

  21. T. S. Lundy, F. R. Winslow, R. E. Pawel and C.J. McHargue, “Diffusion of Nb-95 and Ta-182 in Niobium (Columbium)”, Trans AIME, 233, 1965, pp. 1533–1539

    CAS  Google Scholar 

  22. R. E. Pawel and T. S. Lundy, “The Diffusion of Nb95 and Ta182 in Tantalum”, J. Phys Chem Solids, 26, 1965, pp. 937–942

    Article  CAS  Google Scholar 

  23. J. Askill, “Self-Diffusion in Chromium”, Diffusion in Body-Centered Cubic Metals, Chapter 18, ASM, Metals Park, Ohio, 1965

    Google Scholar 

  24. J. Askill and D.H. Tomlin, “Self-Diffusion in Molybdenum”, Phil Mag, 8, 1963, pp. 997–1001

    Article  CAS  Google Scholar 

  25. R. L. Andelin, J. D. Knight and M. Kahn, “Diffusion of Tungsten and Rhenium Tracers in Tungsten”, Trans AIME, 233, 1965, pp. 19–24

    CAS  Google Scholar 

  26. O. D. Sherby and P. M. Burke, “Mechanical Behavior of Crystalline Solids at Elevated Temperature”, First Technical Report to NASA (SC-NGR-05–020–084) August 1, 1967

    Google Scholar 

  27. J. Stoop and P. Shahinian, “Effect of Oxygen on Creep-Rupture of Niobium”, High Temperature Refractory Metals, Part 2, AIME Metallurgical Society Conferences, Volume 34, 1966, pp. 407–432

    Google Scholar 

  28. D. P. Gregory and G. H. Rowe, “Mechanisms of Creep in Columbium and Columbium-1% Zirconium Alloy”, Columbium Metallurgy, AIME Metallurgical Society Conferences, Volume 10, 1960, pp. 309–341

    Google Scholar 

  29. J. E. Flinn and E. R. Gilbert, “Discussion of High Temperature Creep of Tantalum”, Trans AIME, 236, 1966, pp. 1512–1513

    CAS  Google Scholar 

  30. G. W. King and H. G. Sell, “The Effect of Thoria on the Elevated-Temperature Tensile Properties of Recrystallized High-Purity Tungsten”, Trans AIME, 233, 1965, pp. 1104–1113

    CAS  Google Scholar 

  31. J. W. Pugh, “Tensile and Creep Properties of Tungsten at Elevated Temperatures”, Proc ASTM, 57, 1957, pp. 906–915

    CAS  Google Scholar 

  32. C. R. Barrett and W. D. Nix, “A Model for Steady State Creep Based on the Motion of Jogged Screw Dislocations”, Acta Met, 13, 1965, pp. 1247–1258

    Article  Google Scholar 

  33. W. F. Sheely, “Mechanical Properties of Niobium-Oxygen Alloys”, J. Less Common Metals, 4, 1962, pp. 487–495

    Article  CAS  Google Scholar 

  34. F.F. Schmidt, W. D. Klopp, W.M. Albrecht, F. C. Holden, H. R. Ogden and R. I. Jaffee, “Investigation of the Properties of Tantalum and Its Alloys”, WADD Technical Report 59–13, March, 1960

    Google Scholar 

  35. H. E. McCoy and D. A. Douglas, “Effect of Various Gaseous Contaminants on the Strength and Formability of Columbium”, Columbium Metallurgy, AIME Metallurgical Society Conferences, Volume 10, 1960, pp. 85–118

    Google Scholar 

  36. R. W. Armstrong, J. H. Bechtold and R. T. Begley, “Mechanisms of Alloy Strengthening in Refractory Metals” Refractory Metals and Alloys II, AIME Metallurgical Society Conferences, Volume 17, 1963, pp. 159–190

    Google Scholar 

  37. W. H. Chang, “Strengthening of Refractory Metals”, Refractory Metals and Alloys, AIME Metallurgical Society Conferences, Volume 11, 1961, pp. 83–117

    Google Scholar 

  38. G. D. McAdam, “Substitutional Niobium Alloys of High Creep Strength”, J. Inst, of Metals, 93, 1964–65, pp. 559–564

    Google Scholar 

  39. E. S. Bartlett, D. N. Williams, H. R. Ogden, R. I. Jaffee and E. F. Bradley, “High-Temperature Solid-Solution-Strengthened Columbium Alloys”, Trans AIME, 227, 1963, pp. 459–467

    CAS  Google Scholar 

  40. C. S. Hartley, J. E. Steedly and L. D. Parson, “Binary Interdiffusion in Body-Centered Cubic Transition Metal Systems”, Diffusion in Body-Centered Cubic Metals, Chapter 4, ASM, Metals Park, Ohio, 1965

    Google Scholar 

  41. W. H. Chang, “Influence of Heat Treatment on Microstructure and Properties of Columbium-Base and Chromium-Base Alloys”, ASD-TDR-62–211, Part IV, March, 1966

    Google Scholar 

  42. R. F. Peart and D. H. Tomlin, “Diffusion of Solute Elements in Beta-Titanium”, Acta Met, 10, 1962, pp. 123–134

    Article  CAS  Google Scholar 

  43. G. B. Gibbs, D. Graham and D. H. Tomlin, “Diffusion in Titanium and Titanium-Niobium Alloys”, Phil Mag, 8, 1963, pp. 1269–1282

    Article  CAS  Google Scholar 

  44. V. P. Lubinov, P. V. Geld and G. P. Shveykin, Isv. Akad. Nauk SSSR, Met i Gorn, Delo 5, 137, 1964

    Google Scholar 

  45. P. V. Geld, Z. Ya. Velmozhnyi, V. D. Lubinov and G. P. Shveykin, Isv. Vysshikh Uchehn. Zavedenic Tsvetn, Met. 2, 135, 1966

    Google Scholar 

  46. R. W. Buckman, Jr. and R. C. Goods peed, “Considerations in the Development of Tantalum Base Alloys,” This Volume

    Google Scholar 

  47. E. S. Bartlett, F. F. Schmidt and H. R. Ogden, “Properties of Ta-W-Mo Alloys”, High Temperature Refractory Metals, Part 2, AIME Metallurgical Society Conferences, Volume 34, 1966, pp. 326–345

    Google Scholar 

  48. H. T. Greenaway, “Creep Testing of Chromium Alloys”, Report ARL/Met. 55, Aeronautical Research Laboratories, Melbourne, Australia, October, 1964

    Google Scholar 

  49. J. W. Clark and C. S. Wukusick, Preliminary Information Reported by General Electric Co., Evendale, Ohio, Under a NASA Contract (cited in Ref. 50, p. 12)

    Google Scholar 

  50. D. J. Maykuth and A. Gilbert, “Chromium and Chromium Alloys”, DMIC Report 234, October 1, 1966

    Google Scholar 

  51. M. Semchyshen, “Development and Properties of Arc-Cast Molybdenum-Base Alloys”, The Metal Molybdenum, (Edited by J.J. Harwood), Chapter 14, ASM, Cleveland, Ohio, 1958

    Google Scholar 

  52. P. L. Raffo, W. D. Klopp and W. R. Witzke, “Mechanical Properties of Arc-Melted and Electron-Beam-Melted Tungsten-Base Alloys”, NASA TN D-2561, January, 1965

    Google Scholar 

  53. W. D. Klopp, W. R. Witzke and P. L. Raffo, “Mechanical Properties of Dilute Tungsten-Rhenium Alloys”, NASA TN D-3483, September, 1966

    Google Scholar 

  54. P. L. Raffo and W. D. Klopp, “Mechanical Properties of Solid-Solution and Carbide-Strengthened Arc-Melted Tungsten Alloys”, NASA TN D-3248, February, 1966

    Google Scholar 

  55. L.L. Seigle, “Structural Considerations in Developing Refractory Metal Alloys”, The Science and Technology of Selected Refractory Metals, (Edited by N. E. Promisel) AGARD Conference on Refractory Metals held in Oslo, Norway, June 23–26, 1963, pp. 63–93

    Google Scholar 

  56. R. T. Begley and J. H. Bechtold, “Effect of Alloying on the Mechanical Properties of Niobium”, J. Less Common Metals, 3, 1961, pp. 1–12

    Article  CAS  Google Scholar 

  57. R. T. Begley, J. A. Cornie and R. C. Goodspeed, “Development of Columbium Base Alloys”, AFML-TR-67–116, November, 1967

    Google Scholar 

  58. G. D. McAdam, “The Influence of Carbide and Boride Additions on the Creep Strength of Niobium Alloys”, J. Inst. of Metals, 96, 1968, pp. 13–16

    CAS  Google Scholar 

  59. N. E. Ryan, “The Formation, Stability and Influence of Carbide Dispersions in Chromium”, J. Less Common Metals, 11, 1966, pp. 221–248

    Article  CAS  Google Scholar 

  60. L S. Rubenstein, “Effects of Composition and Heat Treatment on High-Temperature Strength of Arc-Melted Tungsten-Hafnium-Carbon Alloys, NASA TN D-4379, February, 1968

    Google Scholar 

  61. R. T. Begley, J. L. Godshall and R. Stickler, “Precipitation Hardening Columbium-Hafnium-Nitrogen Alloys”, Fifth Plansee Seminar, June 22–26, 1964, Reutte/Tyrol, pp. 401–420

    Google Scholar 

  62. A. K. Mukherjee and J. W. Martin, “The Effect of Nitriding upon the Creep Properties of Some Molybdenum Alloys”, J. Less Common Metals, 5, 1963, pp. 403–410

    Article  CAS  Google Scholar 

  63. A. C. Barber and P. H. Morton, “A Study of the Niobium-Zirconium-Carbon and Niobium-Zirconium-Oxygen Systems”, High Temperature Refractory Metals, Part 2, AIME Metallurgical Society Conferences, Volume 34, 1966, pp. 391–406

    Google Scholar 

  64. D. O. Hobson, “Aging Phenomena in Columbium-Base Alloys”, High Temperature Materials II, AIME Metallurgical Society Conferences, Volume 18, 1963, pp. 325–334

    CAS  Google Scholar 

  65. J. R. Stewart, W. Lieberman and G. H. Rowe, “Recovery and Recrystallization of Columbium-1% Zirconium Alloy”, Columbium Metallurgy, AIME Metallurgical Society Conferences, Volume 10, 1960, pp. 407–434

    Google Scholar 

  66. R. T. Begley, R. L. Ammon and R. Stickler, “Development of Niobium Base Alloys”, WADC TR 57–344, Part VI, February, 1963

    Google Scholar 

  67. R. M. Bonesteel, J. L Lytton, D.J. Rowcliffe and T. E. Tietz, “Recovery and Internal Oxidation of Columbium and Columbium Alloys”, AFML-TR-66–253, August, 1966

    Google Scholar 

  68. R. W. Buckman, Jr., Unpublished Research on Studies of Internally Oxidized T-111 Alloy, Westinghouse Astronuclear Laboratory

    Google Scholar 

  69. R. W. Buckman, Jr., “Operation of Ultra High Vacuum Creep Testing Laboratory”, Transactions Vacuum Metallurgy Conference, 1966, American Vacuum Society, 1967, pp. 25–37

    Google Scholar 

  70. R. W. Buckman, Jr. and R. C. Goodspeed, Unpublished Research, Westinghouse Astronuclear Laboratory

    Google Scholar 

  71. R. H. Titran and R. W. Hall, “Ultrahigh-Vacuum Creep Behavior of Columbium and Tantalum Alloys at 2000° and 2200°F for Times Greater Than 1000 Hours”, NASA TN D-3222, January, 1966

    Google Scholar 

  72. TRW, Inc., “Generation of Long Time Creep Data on Refractory Alloys at Elevated Temperatures”, Final Report on Contract NAS 3–2545, June 6, 1967

    Google Scholar 

  73. R. A. Perkins, “Effect of Processing Variables on the Structure and Properties of Refractory Metals”, AFML-TR-65–234, Part II, May, 1967

    Google Scholar 

  74. R. T. Begley and J. A. Cornie, Unpublished Research, Westinghouse Astronuclear Laboratory

    Google Scholar 

  75. H. G. Sell, W. R. Morcom and G. W. King, “Development of Dispersion Strengthened Tungsten Base Alloys”, AFML-TR-65–407, Part II, November, 1966

    Google Scholar 

  76. R. T. Begley and J. L. Godshall, “Some Observations on the Role of Grain Boundaries in High Temperature Deformation and Fracture of Refractory Metals”, Paper Presented at the Fourth Symposium on Refractory Metals, French Lick, Indiana, October 3–5, 1965

    Google Scholar 

  77. E. Rudy and others, Aerojet-General Corporation, “Ternary Phase Equilibria in Transition MetaI-Boron-Carbon-SiIicon Systems”, AFML-TR-65–2, 1965–66

    Google Scholar 

  78. R. W. Buckman, Jr. and R. C. Goodspeed, “Development of Dispersion Strengthened Tantalum Base Alloy”, Sixth Quarterly Report on Contract NAS 3–2542, NAS CR-54658

    Google Scholar 

  79. R. N. Stevens, “Grain Boundary Sliding in Metals”, Metallurgical Reviews, 11, 1966, pp. 129–142

    Google Scholar 

  80. R. C. Gifkins, Fracture, (Edited by B. L. Averback, D. S. Felbeck, G. T. Hahn and D. A. Thomas), Technology Press and J. Wiley and Sons, New York, 1959

    Google Scholar 

  81. B. A. Wilcox, A. Gilbert and B. C. Allen, “Intermediate-Temperature Ductility and Strength of Tungsten and Molybdenum TZM”, AFML-TR-66–89, April, 1966

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 American Institute of Mining, Metallurgical, and Petrolium Engineers, Inc.

About this paper

Cite this paper

Begley, R.T., Harrod, D.L., Gold, R.E. (1968). High Temperature Creep and Fracture Behavior of the Refractory Metals. In: Machlin, I., Begley, R.T., Weisert, E.D. (eds) Refractory Metal Alloys Metallurgy and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9120-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9120-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9122-7

  • Online ISBN: 978-1-4684-9120-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics