Advertisement

The Less Common Refractory Metals (Rhenium, Technetium, Hafnium, Noble Metals)

  • Joseph Maltz
Conference paper

Abstract

Previous reviews of the status of the less-common refractory metals are cited and supplemented with discussions of newer developments. The physical metallurgy of rhenium and of technetium, an artificial element which has only recently become available in sufficient amount for metallurgical studies to be possible, are surveyed. New data on phase equilibria, mechanical and physical properties and availability are included. Special attention is also given to the roles of hafnium-tantalum alloys and of iridium as oxidation-resistant coatings suitable for special situations. Insofar as the potential usage of the less common refractory metals in applications which depend upon their high melting point is concerned, high cost and low availability preclude any radical changes in the near future. Instead, an orderly growth is indicated as research pinpoints the occasional unique benefits which can justify their very high cost.

Keywords

Refractory Metal Platinum Metal Oxide Dispersion Strengthen Recession Rate Clothe Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. I. Jaffee, D. J. Maykuth and R. W. Douglass, Rhenium and the Refractory Platinum-Group Metals, A.I.M.E. Metallurgical Society Conference Vol. 11, Ed. by M. Semchyshen and J. J. Harwood, Interscience Publishers, 1961, 383–463Google Scholar
  2. (2).
    B. W. Gonser, Editor, Rhenium, Elsevier Publishing Co., 1962 (225 pages). Proceedings of a symposium sponsored by the Electrochemical Society, May 1960Google Scholar
  3. (3).
    J. G. Booth, R. I. Jaffee and E. I. Salkovitz, The Mechanisms of the Rhenium-Alloying Effect in Group VI-A Metals, Plansee Proceedings 1964, Edited by F. Benesovsky, Metallwerk Plansee AG, 547–564Google Scholar
  4. (4).
    R. D. Peacock, The Chemistry of Technetium and Rhenium, Elsevier Publishing Company, 1966Google Scholar
  5. (5).
    R. P. Elliot, Constitution of Binary Alloys, First Supplement, McGraw-Hill Book Co., 1965Google Scholar
  6. (6).
    E. M. Savitskii and M. A. Tylkina, Phase Diagrams of Rhenium with the Transition Metals, pp. 67–83 of reference (2)Google Scholar
  7. (7).
    J. Niemiec, Arch. Hutnictwa (Poland) 10 (1965) 121–141 (Eng.)Google Scholar
  8. (8).
    W. D. Klopp, Rhenium Ductility Effect in Group Via Metals, NASA Technical Note TN D-, 1968.Google Scholar
  9. (9).
    N. D. Tarasov, R. A. Ulyanov and Y. D. Mikhaylov, The Effect of Alloying on the Physiomechanical Properties of Niobium, NASA technical translation from the Russian, TT-F-9374 (1964)Google Scholar
  10. (10).
    G. D. McAdam, Substitutional Niobium Alloys of High Creep Strength, J. Inst. Metals 93 (1965), 559Google Scholar
  11. (11).
    J. H. Port and J. M. Pontenandolfo, Fabrication and Properties of Rhenium and Rhenium-Molybdenum Alloy, in AIME Metallurgical Society Conferences Vol. 2, Reactive Metals, Interscience Publishers, New York/London (1959) pp. 555–574, with additional data by Chase Brass and Copper Co. dated March, 1965.Google Scholar
  12. (12).
    C.T. Sims and R. I. Jaffee, Further Studies of the Properties of Rhenium Metal, AIME Trans. 206 (1956), 913–917Google Scholar
  13. (13).
    C.T. Sims, C. M. Craighead and R. I. Jaffee, Physical and Mechanical Properties of Rhenium, AIME Trans. 203 (1955) 168–179Google Scholar
  14. (14).
    A. L. Field Jr., R. L. Ammon, A. I. Lewis and L. S. Richardson, Fabrication and Properties of Tantalum-Base Alloys, in High Temperature Materials II, AIME Metallurgical Society Conferences Vol. 18, Interscience Publishers, 1963, pp. 139–157Google Scholar
  15. (15).
    W. D. Klopp, W. R. Witzke and P. L. Raffo, Mechanical Properties of Dilute Tungsten-Rhenium Alloys, NASA Technical Note TN D-3483, September 1966Google Scholar
  16. (16).
    J. W. Pugh, L. H. Amra and D. T. Hurd, Properties of Tungsten-Rhenium Lamp Wire, Trans. ASM 55 (1962), 451–461Google Scholar
  17. (17).
    J. R. Stephens and R. G. Garlick, Compatibility of Tantalum, Columbium and their Alloys with Hydrogen in the Presence of a Temperature Gradient, NASA Technical Note TN D-3546, August 1966Google Scholar
  18. (18).
    R. A. Rapp and G. N. Goldberg, The Oxidation of Cb-Zr and Cb-Zr-Re Alloys in Oxygen at 1000°C, Trans. Met. Soc. AIME 236 (1966), 1619–1628Google Scholar
  19. (19).
    N. D. Tomashov, G. P. Chernova and O. N. Marcova, Effect of Supplementary Alloying Elements on Pitting Corrosion Susceptibility of 18 Cr-14Ni Stainless Steel, Corrosion 20 (1964), l66t–173tGoogle Scholar
  20. (20).
    P. N. Flagella and C. O. Tarr, Creep-Rupture Properties of Rhenium and Some Alloys of Rhenium at Elevated Temperature, in Refractory Metals and Alloys IV, AIME Metallurgical Conference series, to be published by Gordon & Breach, 1968Google Scholar
  21. (21).
    Metals Handbook, 8th Edition Vol. 1, American Society for Metals, 1961Google Scholar
  22. (22).
    C. J. Smithells, Metals Reference Book, 4th Edition, Plenum Press, 1967Google Scholar
  23. (23).
    R. W. Powell, R. P. Tye and M. J. Woodman, The Thermal Conductivity and Electrical Resistivity of Rhenium, J. Less-Common Metals 5 (1963), 49–56CrossRefGoogle Scholar
  24. (24).
    Electro-Optical Systems, Inc. NASA Contract NAS 7–514 (July 1967), unpublished data.Google Scholar
  25. (25).
    J. G. Donaldson, F. W. Hoertel and A. A. Cochran, A Preliminary Study of Vapor Deposition of Rhenium and Rhenium-Tungsten, J. Less-Common Metals 14 (1968), 93–101CrossRefGoogle Scholar
  26. (26).
    G. E. Boyd and Q. V. Larson, Report of the Occurrence of Technetium in the Earths’ Crust, J. Phys. Chem 60 (1956) 707–715CrossRefGoogle Scholar
  27. (27).
    C. Perrier and E. Segré, Some Chemical Properties of Element 43, J. Chem. Phys. 5 (1937), 712–716CrossRefGoogle Scholar
  28. (28).
    D. E. Baker, The Thermal Conductivity of Technetium, J. Less-Common Metals 8 (1965), 435–436CrossRefGoogle Scholar
  29. (29).
    J. A. Wheeler Jr., G. R. Love and M. L. Picklesimer, Technetium and its Alloys, Oak Ridge National Laboratory ORNL-3870 (annual report for year ending June 30, 1965)Google Scholar
  30. (30).
    R. S. Kemper and D. O. O’Keefe, Quarterly Progress Reports, NASA Contract R-48–005-001Google Scholar
  31. (31).
    G. H. Cartledge, J. Amer. Chem. Soc. 77 (1955), 2658CrossRefGoogle Scholar
  32. (32).
    J. Niemiec, X-Ray Analysis of Technetium Binary Alloys with Tungsten and Rhenium (in English), Bulletin de L’Académie Polonaise des Sciences, Série des Sciences Chimiques, XI No. 6 (1963), 311–316Google Scholar
  33. (33).
    M. G. Chasanov, I. Johnson and R. V. Schablaske, The System Zinc-Technetium-99, J. Less-Common Metals 7 (1964), 127–132CrossRefGoogle Scholar
  34. (34).
    J. B. Darby Jr., J. W. Downey and L. J. Norton, Intermediate Phases in Technetium-Aluminum and Technetium-Silicon Systems, J. Less-Common Metals 8 (1965), 15–19CrossRefGoogle Scholar
  35. (35).
    J. B. Darby Jr., A. F. Berndt and J. W. Downey, Some Intermediate Phases in the Thorium-Technetium and Uranium-Technetium Systems, J. Less-Common Metals 9 (1965), 466–468CrossRefGoogle Scholar
  36. (36).
    A. L. Giorgi and E. G. Szklarz, Los Alamos Scientific Laboratory, unpublished data, November 1964Google Scholar
  37. (37).
    C. C. Koch and G. R. Love, The Electrical Resistivity of Technetium from 8.0°K to 1700°K, J. Less-Common Metals 12 (1967), 29–35CrossRefGoogle Scholar
  38. (38).
    S. T. Sekula, R. H. Kernohan and G. R. Love, Superconducting Properties of Technetium, Phys. Rev. 155 (1967) 364–369CrossRefGoogle Scholar
  39. (39).
    A. L. Giorgi and E. G. Szklarz, Superconductivity of Technetium and Technetium Carbide, J. Less-Common Metals 11 (1966), 455–456CrossRefGoogle Scholar
  40. (40).
    A. L. Giorgi and E. G. Szklarz, The Nb-Re and Nb-Tc Systems, Los Alamos Scientific Lab., Unpublished data, 1964Google Scholar
  41. (41).
    C. C. Koch, R. H. Kernohan and S. T. Sekula, Superconductivity in the Technetium-Vanadium Alloy System, J. Appl. Physics 38 (1967), 4359–4364CrossRefGoogle Scholar
  42. (42).
    C. C. Koch and G. R. Love, Reaction Morphologies and Superconducting Properties in Technetium-Vanadium Alloys, presented to AIME, February 1968.Google Scholar
  43. (43).
    S. H. Autler, J. K. Hulm and R. S. Kemper, Superconducting Technetium-Tungsten Alloys, Phys. Rev. 140 (1965), A1177CrossRefGoogle Scholar
  44. (44).
    Anon., The Specialty Metals Industry, Materials Today (American Society for Metals) March 1968, 28–31Google Scholar
  45. (45).
    D. E. Thomas and E. T. Hayes, the Metallurgy of Hafnium, Atomic Energy Commission. U. S. Government Printing Office, 1959 (384 pp.)Google Scholar
  46. (46).
    P. D. Raffo and W. D. Klopp, Mechanical Properties of Solid-Solution and Carbide-Strengthened Arc-Melted Tungsten Alloys, Technical Note TN D-3248. National Aeronautics and Space Administration, February 1966. U. S. Government Printing Office.Google Scholar
  47. (47).
    K. Marnoch, High-Temperature Oxidation-Resistant Hafnium-Tantalum Alloys, J. of Metals, (Nov. 1965) 1225–1231Google Scholar
  48. (48).
    J. J. Rausch, IIT Research Institute, Protective Coatings for Tantalum-Base Alloys, Tech. Report No. AFML-TR-64354, Air Force Materials Lab, Nov. 1964 Part II, January 1966 and Part III, Sept. 1966Google Scholar
  49. (49).
    R. T. Wimber, Solar Division of International Harvester Company, Development of Protective Coatings for Tantalum Base Alloys, Tech. Summary Report ML-TDR-64–294, Pt II, Air Force Materials Lab., Nov. 1965Google Scholar
  50. (50).
    P. Kofstad and S. Espevik, Kinetic Study of High-Temperature Oxidation of Hafnium, J. Less-Common Metals 12 (May 1967), 382CrossRefGoogle Scholar
  51. (51).
    L. L. Oden, D. K. Deardoff, M. I. Copeland and H. Kato, The Hafnium-Tantalum Equilibriam Diagram, Bureau of Mines Station, Albany, Oregon, Report of Investigation 6521, 1964Google Scholar
  52. (52).
    P. A. Ramans, O. G. Paasche and H. Kato, The Transformation Temperature of Hafnium, J. Less-Common Metals 8 (1965), 213CrossRefGoogle Scholar
  53. (53).
    A. Taylor and N. J. Doyle, The Constitution Diagram of the Niobium-Hafnium System, J. Less-Common Metals 7 (1964), 37.CrossRefGoogle Scholar
  54. (54).
    V. L. Hill, Development of Oxidation-Resistant Hafnium Alloys, Final Report IITRI-136062–4, July 1967, under Naval Air Systems Command Contract NOw 66–0212-dGoogle Scholar
  55. (55).
    D. R. Mash, A. L. Donlevy and D. W. Bauer, Tantalum-Hafnium Alloys: Metallurgical Processing Technology. Interim report under NASA Contract NAS 7–417, 9 Oct. 1966Google Scholar
  56. (56).
    R. W. Douglassand R. I. Jaffee, Elevated Temperature Properties of Rhodium, Iridium and Ruthenium, Proc. ASTM 62 (1962), 627–637Google Scholar
  57. (57).
    C. A. Brookes and B. Harris, Tensile Properties of Refractory Metals at High Temperatures, Plansee Proceedings 1961, F. Benesovsky, ed., pp. 712–722Google Scholar
  58. (58).
    R. D. Berry and J. Hope, High Temperature Mechanical Properties and Corrosion Resistance of Iridium and its Alloys, Rev. Met. 34 (1966) 339–345Google Scholar
  59. (59).
    A. S. Bufferd, K. M. Zwilsky, J. T. Blucher and N. J. Grant, Oxide Dispersion Strengthened Platinum, Int. J. Powder Met. 3 (1967), 17–26Google Scholar
  60. (60).
    A. S. Darling, G. L. Selman and A. A. Bourne, Dispersion Strengthened Platinum, Plat. Metals Rev. 12 (Jan. 1968)Google Scholar
  61. (61).
    International Nickel Co. (Mond), Ltd. British Patent 974,057Google Scholar
  62. (62).
    New England Materials Laboratory, Inc. U. S. Patent 3,175,904Google Scholar
  63. (63).
    J. C. Criscione et al, High Temperature Protective Coatings for Graphite, Air Force Reports AFML-TDR-64–173 Pt. II (Jan. 1965), AD 608 092; Pt. III (Dec. 1965), AD 479131; and Pt. IV (Feb. 1967), AD 805 438.Google Scholar
  64. (64).
    D. B. Alcock and G. W. Hooper, Thermodynamics of the Gaseous Oxides of the Platinum-Group Metals, Proc. Royal Society A. 254 (1960), 551–561CrossRefGoogle Scholar
  65. (65).
    C. A. Krier and R. I. Jaffee, Oxidation of the Platinum-Group Metals, J. Less-Common Metals 5 (1963), 411–431CrossRefGoogle Scholar
  66. (66).
    General Electric Plight Propulsion Laboratory, High-Temperature Materials Program, Prog. Report No. 17 Part A (USAEC GEMP-17A), Nov. 15, 1962Google Scholar
  67. (67).
    J. M. Criscione, J. Rexer and R. G. Fenish, High Temperature Protective Coatings for Refractory Metals, Yearly Summary Report, NASA Accession Number 66–1022, March 1966.Google Scholar
  68. (68).
    H. F. Volk, Status of Oxidation Protective Coatings for Graphite, to be issued as part of report of Materials Advisory Board Panel on Protective Coatings, 1968Google Scholar
  69. (69).
    V. L. Hill and J. J. Rausch, Protective Coatings for Tantalum-Base Alloys, Final Summary Technical Report, Air Force APML-TR-64–354 Pt. III, Sept. 1966Google Scholar
  70. (70).
    D. T. Dickson, R. T. Wimber and A. R. Stetson, Very High Temperature Coatings for Tantalum Alloys, Pinal Summary Technical Report, Air Porce APML-TR-66–317, October 1966Google Scholar
  71. (71).
    E. D. Zysk, D. A. Toenshoff and J. Penton, Compatibility of Iridium with Other High Temperature Materials at Elevated Temperatures, Engelhard Industries Tech. Bull. IV, (1963) 52–58Google Scholar
  72. (72).
    A. S. Darling, The Elastic and Plastic Properties of the Platinum Metals, Plat. Metals Rev. 10 (1966), 14–18Google Scholar
  73. (73).
    W. Hume-Rothery, The Platinum Metals and their Alloys, Plat. Metals Rev. 10 (1966), 94–100Google Scholar
  74. (74a).
    G. Reinacher, Metall, 18 (1964), 731–740,Google Scholar
  75. (74b).
    G. Reinacher,See Properties of Iridium at High Temperatures, Platinum Metals Rev. 9 (1965), 18–19Google Scholar
  76. (75a).
    G. Reinacher, Metall. 17 (1963), 699–705, See Properties of Rhodium at High Temperatures,Google Scholar
  77. (75b).
    G. Reinacher, Platinum Metals Rev. 7 (1963), 144–146Google Scholar
  78. (76).
    G. A. Geach, A. G. Knapton and A. A. Woolf, Certain Alloys of Ruthenium with Molybdenum, same as ref. (57) pp. 750–758.Google Scholar
  79. (77).
    International Nickel Co. (Mond) Ltd., British Patent 974,057.Google Scholar
  80. (78).
    L. Pauling, The Chemical Bond, Cornell Univ. Press 1967, p. 210Google Scholar

Copyright information

© American Institute of Mining, Metallurgical, and Petrolium Engineers, Inc. 1968

Authors and Affiliations

  • Joseph Maltz
    • 1
  1. 1.National Aeronautics and Space AdministrationUSA

Personalised recommendations