Advertisement

Pyrometallurgical Processes

  • S. E. Khalafalla
  • J. W. Evans
  • C.-H. Koo
  • H. Y. Sohn
  • E. T. Turkdogan
  • I. B. Cutler
  • C. H. Pitt

Abstract

In the journey from raw materials in ores to metals as finished products, roasting represents a significant milestone. Specifically, roasting covers operations between ore dressing or concentration on the one hand and actual metal recovery and finishing on the other. Traditional roasting involves chemical reactions with the furnace atmosphere at temperatures below the fusion point of the charge or product. Reactions in the molten state to produce metal, matte, or slag are metallurgically distinguished as smelting.

Keywords

Nickel Oxide Induction Time Liquid Iron Iron Steel Inst Molten Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Pehlke, Unit-Processes of Extractive Metallurgy. American Elsevier Publ. Co., New York (1973), pp. 7–23.Google Scholar
  2. 2.
    I. Iwasaki, A thermodynamic interpretation of the segregation process for copper and nickel ores, Minerals Sci. Eng. 4 (2), 14–23 (1972).Google Scholar
  3. 3.
    J. D. Gilchrist, Extraction Metallurgy, Pergamon Press, London (1967), pp. 169–171.Google Scholar
  4. 4.
    H. H. Kellogg, A critical review of sulfation equilibria, Trans. TMS-AIME 230, 1622–1634 (1963).Google Scholar
  5. 5.
    W. M. McKewan, Kinetics of iron oxide reduction, Trans. TMS-AIME 212, 791–794 (1958).Google Scholar
  6. 6.
    R. W. Stewart, A. P. Linden, I. B. Cutler, and M. E. Wadsworth, Geometric factors in solid-state reactions, in Energetics in Metallurgical Phenomena, W. M. Mueller, ed., Vol III, Gordon and Breach, New York (1967), pp. 19–51.Google Scholar
  7. 7.
    W. K. Lu, The general rate equation for gas-solid reactions in metallurgical processes, Trans. TMS-AIME 227, 2303–2306 (1963).Google Scholar
  8. 8a.
    K. Mori, A rate equation for the reduction of iron ore, Tetsu to Hagane, 50, 2259–2260 (1964);Google Scholar
  9. 8b.
    K. Mori, A rate equation for the reduction of iron ore, Chem. Abstr. 63, 14,429e (1965).Google Scholar
  10. 9.
    B. B. L. Seth and H. U. Ross, The mechanism of iron oxide reduction, Trans. TSM-AIME 233, 180–185 (1965).Google Scholar
  11. 10.
    H. W. St. Clair, Rate of reduction of an oxide sphere in a stream of reducing gas, Trans. TMS-AIME 233, 1145–1152 (1965).Google Scholar
  12. 11.
    R. H. Spitzer, F. S. Manning, and W. O. Philbrook, Mixed control reaction kinetics in the gaseous reduction of hematite, Trans. TMS-AIME 236, 726–742 (1966).Google Scholar
  13. 12.
    S. E. Khalafalla, G. W. Reimers, and M. J. Baird, Effect of low concentrations of silica, alumina, lime, and lithia on the magnetic roasting of hematite, Met. Trans. 5, 1013–1018(1974).CrossRefGoogle Scholar
  14. 13.
    D. A. Young, Decomposition of Solids, Pergamon Press, New York (1966), pp. 49–52.Google Scholar
  15. 14.
    G. Asmund, Chemistry and Kinetics of the Sulfating Roasting of Uranium-Bearing Silicates, Danish Atomic Energy Commission, Report No. 253, Kopenhagen, (Oct. 1971), 125 pp.Google Scholar
  16. 15.
    W. Gautschi and W. F. Cahill, Exponential integrals and related function, in Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, eds., U.S. Dept. of Commerce, NBS AMS55, Washington (1964), pp. 227–251.Google Scholar
  17. 16.
    U. R. Evans, The Corrosion and Oxidation of Metals. Scientific Principles and Practical Applications, Edward Arnold Publishers, Ltd., London (1961), pp. 819–859.Google Scholar
  18. 17.
    C. Prasky, F. E. Joyce, Jr., and W. S. Swanson, Differential sulfatizing process for the recovery of ferrograde manganese, U.S.B.M. 6160 (1963), 30 pp.Google Scholar
  19. 18.
    F. E. Joyce, Jr. and C. Prasky, Sulfatization-reduction of manganiferous iron ore, U.S.B.M. RI 7749 (1973), 17 pp.Google Scholar
  20. 19.
    M. C. Van Hecke and R. W. Bartlett, Kinetics of sulfation of Atlantic Ocean manganese nodules, Met. Trans. 4, 941–947 (1973).CrossRefGoogle Scholar
  21. 20.
    A. W. Fletcher and M. Shelef, A study of the sulfation of a concentrate containing iron, nickel, and copper sulfides, Trans. TMS-AIME, 230, 1721–1724 (1964).Google Scholar
  22. 21.
    A. W. Fletcher and M. Shelef, Symposium on unit processes in hydrometallurgy, Met. Soc. Conf. 24, 946–970 (1963).Google Scholar
  23. 22.
    P. G. Thornhill, Roasting sulfide concentrates in fluidized beds, U.S. Pat. 2,813,015 (1957), Falcon Bridge Nickel Mines, Ltd.; Roasting nickeliferous sulfide concentrates in fluidized beds, U.S. Pat. 2,813,016 (1957), Falcon Bridge Nickel Mines, Ltd.Google Scholar
  24. 23.
    F. E. Joyce, Jr., Extraction of copper and nickel from the Duluth-Gabbro complex by selective high-temperature sulfatization, U.S.B.M. RI 7475 (1971), 15 pp.Google Scholar
  25. 24.
    C. G. Alcock and M. G. Hocking, Kinetics and mechanism of formation of cobalt sulfate on cobalt oxide, Inst. Min. Met. Trans. C. 75, (712), 27–36 (1966).Google Scholar
  26. 25.
    A. W. Sommer and H. H. Kellogg, Oxidation of sphalerite by sulfur trixoide, Trans. TMS-AIME 215, 742–744 (1959).Google Scholar
  27. 26.
    N. B. Gray, N. W. Stump, W. S. Boundy, and R. V. Culver, The sulfation of lead sulfide, TMS-AIME 239, 1835–1840 (1967).Google Scholar
  28. 27.
    J. M. Kruse and N. J. Pitman, Extracting beryllium from very lean nonpegmate ores, U.S. Pat. 3,148,022 (1964), E.I. du Pont de Nemours and Co.Google Scholar
  29. 28.
    T. Chao and S. C. Sun, Study of sulfatization of alumina with gaseous sulfur trioxide, Trans. TMS-AIME 238, 420–429 (1967).Google Scholar
  30. 29.
    L. A. Haas and S. E. Khalafalla, Formation of water-soluble aluminum compounds by dry sulfation of clay, Presented at Annual Meeting, AIME, New York, February 1975.Google Scholar
  31. 30.
    G. P. Losos and B. M. Hoffman, Electron paramagnetic resonance of a nitroxide adsorbed on silica, silica-alumina, alumina, and decationated zeolites, J. Phys. Chem. 78, 2110–2116 (1974).CrossRefGoogle Scholar
  32. 31.
    K. Natesan and W. O. Philbrook, Oxidation kinetic studies of zinc sulfide pellets, Trans. TMS-AIME 245, 2243–2250 (1969).Google Scholar
  33. 32.
    K. Natesan and W. O. Philbrook, Oxidation kinetic studies of zinc sulfide in a fluidized-bed reactor, Met. Trans. 1, 1353–1360 (1970).Google Scholar
  34. 33.
    L. Coudurier, I. Wilkomirsky, and G. Morizat, Molybdenite roasting and rhenium volatilization in a multiple hearth furnace, Inst. Min. Met. Trans. C 79, 34–40 (1970).Google Scholar
  35. 34.
    P. R. Ammann and T. A. Loose, The oxidation kinetics of molybdenite at 525° to 635° C, Met. Trans. 2, 889–893 (1971).CrossRefGoogle Scholar
  36. 35.
    L. J. Hillenbrand, The adsorption and incorporation of oxygen by lead, J. Phys. Chem. 73, 2902–2908 (1969).CrossRefGoogle Scholar
  37. 36.
    R. I. Razouk, M. Y. Farah, R. S. Mikhail, and G. A. Kolta, The roasting of precipitated copper sulfide, J. Appl. Chem. 12, 190–196 (1962).CrossRefGoogle Scholar
  38. 37.
    E. A. Ashcroft, Sulfate roasting of copper ores and economic recovery of electrolytic copper from chloride solutions, Trans. Electrochem. Soc. 23, 23–44 (1933).CrossRefGoogle Scholar
  39. 38.
    M. E. Wadsworth, K. L. Leiter, W. H. Parter, and J. R. Lewis, Sulfating of cuprous sulfide and cuprous oxide, Trans. TMS-AIME 218, 519–525 (1960).Google Scholar
  40. 39.
    I. D. Shah and S. E. Khalafalla, Chemical reactions in roasting of copper sulfides, U.S.B.M. RI 7549 (1970), 21 pp.Google Scholar
  41. 40.
    S. E. Khalafalla and I. D. Shah, Oxidative roasting of covellite with minimal retardation from the CuO⋅CuSO4 film, Met. Trans. 1, 2151–2155 (1970).CrossRefGoogle Scholar
  42. 41.
    C. Goetz, Obtaining nonferrous metals such as copper from iron containing ores, U.S. Pat. 2,082,284 (June 1, 1937).Google Scholar
  43. 42.
    I.D. Shah and S. E. Khalafalla, Kinetics and mechanism of the conversion of covellite (CuS) to digenite (Cu1⋅8), Met. Trans. 2, 2637–2643 (1971).CrossRefGoogle Scholar
  44. 43.
    I. D. Shah and S. E. Khalafalla, Kinetics of thermal decomposition of copper(II) sulfate and copper(II) oxysulfate, U.S.B.M. RI 7638 (1972), 21 pp.Google Scholar
  45. 44.
    M. M. Pavlyuchenko and G. L Samal, Kinetics and mechanism of the thermal decomposition of copper sulfide, Geterogennye Reakts. i. Reakts. Sposobnost (Minsk: Vyssh. Shkola), Sb. 85–94 (1964) (in Russian); Chem. Abstr. 64, 15048c (1966).Google Scholar
  46. 45.
    P. K. Chatterjee, Application of thermogravimetric techniques to reaction kinetics, J. Polymer Sci. A 3, 4253–4262 (1965).Google Scholar
  47. 46.
    T. R. Ingraham and P. Marier, Kinetics of the thermal decomposition of cupric sulfate and cupric oxysulfate, Trans. TMS-AIME 233, 363–367 (1965).Google Scholar
  48. 47.
    V. V. Rao, V. S. Ramakrishna, and K. P. Abraham, Kinetics of oxidation of copper sulfide, Met. Trans. 2, 2463–2470 (1971).CrossRefGoogle Scholar
  49. 48.
    N. W. Kirshenbaum, Transport and handling of sulfide concentrates, problems and possible improvements, Dept. of Mineral Engr., Stanford University, Ca. (1967), 218 pp.Google Scholar
  50. 49.
    P. W. Scott, A review and appraisal of iron ore beneficiation-Part I. Min. Cong. J. 49, 78–83 (June 1963).Google Scholar
  51. 50.
    J. P. Hansen, G. Bitsianes, and T. L. Joseph, A study of the kinetics of magnetic roasting, Blast Furnace, Coke Oven, Raw Materials Conf. 19, 185–205 (1960).Google Scholar
  52. 51.
    J. C. Nigro and T. D. Tiemann, Kinetics and mechanism of the gaseous reduction of hematite to magnetite and the effect of silica, Ph.D Thesis, University of Wisconsin, Madison (1970).Google Scholar
  53. 52.
    S. E. Khalafalla and P. L. Weston, Jr., Promoters for carbon monoxide reduction of wustite, Trans. TMS-AIME 239, 1493–1499 (1967).Google Scholar
  54. 53.
    J. A. Hedvall, Solid-State Chemistry, Elsevier Publ. Co., New York (1966), pp. 28–34.Google Scholar
  55. 54.
    J. H. Fishwick, Treatment of spodumene, U.S. Pat. 3,394,988 (July 30, 1968), Foote Mineral Co.Google Scholar
  56. 55.
    C. B. Daellenbach, R. A. Vik, and W. M. Mahan, Influence of reduction and thermal shock on nonmagnetic taconite grindability, Trans. TMS-AIME 250, 212–217 (1971).Google Scholar
  57. 56.
    N. J. Tighe and P. R. Swann, Direct observation of iron oxide reduction using high-voltage microscopy, Final Scientific Report TR 72–1285 to Air Force Office of Scientific Research (AFOSR) through the European Office of Aerospace Research (OAR), U.S. Air Force Grant E00AR-69–0067, Washington (1972), 32 pp.Google Scholar
  58. 57.
    F. Habashi, Extractive Metallurgy, Vol. 1, Gordon and Breach, New York (1969), p. 258.Google Scholar
  59. 58.
    S. W. Benson, The Foundations of Chemical Kinetics, McGraw-Hill Book Co., New York (1960), p. 35.Google Scholar
  60. 59.
    P. I. Richards Manual of Mathematical Physics, Pergamon Press, London (1959), p. 197.Google Scholar
  61. 60.
    D. H. Andrews and M. L. Boss, The transference of information in growth processes, Yale Sci. Mag. 25 (8) (May 1971).Google Scholar
  62. 61.
    J. R. Miller, Sci. Am. 235, 68 (1976).CrossRefGoogle Scholar
  63. 62.
    E. T. Turkdogan and J. V. Vinters, Met. Trans. 2, 3175 (1971).CrossRefGoogle Scholar
  64. 63.
    E. T. Turkdogan, R. G. Olsson, and J. V. Vinters, Met. Trans. 2, 3189 (1971).CrossRefGoogle Scholar
  65. 64.
    E. T. Turkdogan and J. V. Vinters, Met. Trans. 3, 1561 (1972).CrossRefGoogle Scholar
  66. 65.
    S. Watanbe and M. Yoshinaga, Sumitomo J. 77, 323 (1965).Google Scholar
  67. 66.
    M. C. Chang, J. Vlanty, and D. W. Kestner, Ironmaking Conf., AIME, 26th, Chicago, (1967).Google Scholar
  68. 67.
    W. Wenzel and H. W. Gudenau, Stahl Eisen 90, 689 (1970).Google Scholar
  69. 68.
    W. Wenzel and H. W. Gudenau, Germ. Offen. 440 (1970).Google Scholar
  70. 69.
    L. Granse, Proc. Int. Conf. Sci. and Tech. of Iron and Steel, Trans. Iron Steel Inst. Japan 11, 45 (1971).Google Scholar
  71. 70.
    J. T. Moon and R. D. Walker, Ironmaking Steelmaking, No. 2, 30 (1975).Google Scholar
  72. 71.
    E. T. Turkdogan and J. V. Vinters, Can. Met. Q. 12, 9 (1973).Google Scholar
  73. 72.
    O. Burghardt, H. Kostmann, and B. Grover, Stahl Eisen 90, 661 (1970).Google Scholar
  74. 73.
    E. E. Hoffman, H. Rausch, and W. Thum, Stahl Eisen 90, 676 (1970).Google Scholar
  75. 74.
    H. Vom Ende, J. Grege, S. Thomalla, and E. E. Hofmann, Stahl Eisen 90, 667 (1970).Google Scholar
  76. 75.
    P. Lecomte, R. Vidal, A. Poos, and A. Decker, CNRM Metall. Rep. No. 16 (Sept. 1968).Google Scholar
  77. 76.
    A. Poos and R. Balon, J. Metals 19, 93 (1967).Google Scholar
  78. 77.
    R. L. Bleifuss, Trans. Met. Soc. AIME 247, 225 (1970).Google Scholar
  79. 78.
    B. B. L. Seth and and H. U. Ross, Trans. Met. Soc. AIME 233, 180 (1965).Google Scholar
  80. 79.
    W. Wenzel, H. W. Gudenau, and M. Ponthenkandath, Aufbereitungs-technik 11, 154, 1970.Google Scholar
  81. 80.
    (Lap W. Wenzel, H. W. Gudenau, and M. Ponthenkandath, Aufbereitungs-technik 11, 1970)) Ibid, 492.Google Scholar
  82. 81.
    T. L. Joseph, Trans. AIME 120, 72 (1936).Google Scholar
  83. 82.
    L. von Bogdandy and H.-J. Engell, The Reduction of Iron Ores, Springer-Verlag, Berlin and New York (1971).Google Scholar
  84. 83.
    L. von Bogdandy and W. Janke, Z. Electrochem. Ber. Bunsenges. Phys. Chem. 61, 1146 (1957).Google Scholar
  85. 84.
    H. K. Kohl and H.-J. Engell, Arch. Wiss. 34, 411 (1963).Google Scholar
  86. 85.
    J. M. Quets, M. E. Wadsworth, and J. R. Lewis, Trans. Met. Soc. AIME 218, 545 (1960).Google Scholar
  87. 86.
    W.-K. Lu and G. Bitsianes, Can. Met. Q. 7, 3 (1968).Google Scholar
  88. 87.
    E. T. Turkdogan, Ironmaking Conf. Proc. AIME 31, 438 (1972).Google Scholar
  89. 88.
    R. H. Spitzer, F. S. Manning, and W. O. Philbrook, Trans. Met. Soc. AIME 236, 726 (1966).Google Scholar
  90. 89.
    B. B. L. Seth and H. U. Ross, Trans. Met. Soc. AIME 233, 180 (1965).Google Scholar
  91. 90.
    P. K. Strangway and H. U. Ross, Trans. Met. Soc. AIME 242, 1981 (1968).Google Scholar
  92. 91.
    R. G. Olsson and W. M. McKewan, Trans. Met. Soc. AIME 236, 531 (1966).Google Scholar
  93. 92.
    R. G. Olsson and W. M. McKewan, Met. Trans. 1, 1507 (1970).CrossRefGoogle Scholar
  94. 93.
    G. Nabi and W. K. Lu, J. Iron Steel Inst. 211, 429 (1973).Google Scholar
  95. 94.
    P. F. J. Landler and K. L. Komarek, Trans. Met. Soc. AIME 236, 138 (1966).Google Scholar
  96. 95.
    W. M. McKewan, Trans. Met. Soc. AIME 224, 387 (1962).Google Scholar
  97. 96.
    J. W. Evans and K. Haase, High Temp. Sci. 8, 167 (1976).Google Scholar
  98. 97.
    A. G. Matyas and A. V. Bradshaw, Ironmaking Steelmaking, No. 3, 180 (1974).Google Scholar
  99. 98.
    R. H. Tien and E. T. Turkdogan, Met. Trans. 3, 2039 (1972).CrossRefGoogle Scholar
  100. 99.
    T. G. Cox and F. R. Sale, Ironmaking Steelmaking, No. 4, 234 (1974).Google Scholar
  101. 100.
    J. Szekely and Y. El-Tawil, Met. Trans. 7B, 490 (1976).Google Scholar
  102. 101.
    K. Tittle, Proc. Aust. Inst. Min. Met. 243, 57 (1972).Google Scholar
  103. 102.
    G. D. McAdam, Ironmaking Steelmaking, No. 3, 138 (1974).Google Scholar
  104. 103.
    C.-H. Koo, Ph.D. Dissertation, University of California, Berkeley, 1977.Google Scholar
  105. 104.
    G. Nabi and W.-K. Lu, Ind. Eng. Chem. Fundam. 13, 311 (1974).CrossRefGoogle Scholar
  106. 105.
    S. E. Khalafalla, G. W. Reimers, and M. J. Baird, Met. Trans. 5, 1013 (1974).CrossRefGoogle Scholar
  107. 106.
    R. E. Cech and T. D. Tiemann, Met. Trans. 3, 590 (1972).CrossRefGoogle Scholar
  108. 107.
    J. F. Elliott and M. Gleiser, Thermochemistry for Steelmaking, Addison-Wesley, Reading, Mass., (1960).Google Scholar
  109. 108.
    A. F. Benton and P. H. Emmett, J. Am. Chem. Soc. 46, 2728 (1924).CrossRefGoogle Scholar
  110. 109.
    H. S. Taylor and R. M. Burns, J. Am. Chem. Soc. 43, 1273 (1921).CrossRefGoogle Scholar
  111. 110.
    A. Kivnick and A. N. Hixson, Chem. Eng. Prog. 48, 394 (1952).Google Scholar
  112. 111.
    G. Parravano, J. Am. Chem. Soc. 74, 1194 (1952).CrossRefGoogle Scholar
  113. 112.
    M. T. Simnad, R. Smoluchowski, and A. Spilners, J. Appl. Physics 29, 1930 (1958).CrossRefGoogle Scholar
  114. 113.
    Y. Iida, K. Shimada, and S. Ozaki, Bull. Chem. Soc. Jap. 33, 1372 (1960).CrossRefGoogle Scholar
  115. 114.
    Y. Iida and K. Shimada, Bull. Chem. Soc. Jap. 33, 8 (1960).CrossRefGoogle Scholar
  116. 115.
    Y. Iida and K. Shimada, Bull. Chem. Soc. Jap. 33, 790 (1960).CrossRefGoogle Scholar
  117. 116.
    Y. Iida and K. Shimada, Bull. Chem. Soc. Jap. 33, 1194 (1960).CrossRefGoogle Scholar
  118. 117.
    J. Bandrowski, C. R. Bickling, K. H. Yang, and O. A. Hougen, Chem. Eng. Sci. 17, 379 (1962).CrossRefGoogle Scholar
  119. 118.
    T. Yamashina and T. Nagamatsuya, J. Phys. Chem. 70, 3572 (1966).CrossRefGoogle Scholar
  120. 119.
    E. J. Bicek and C. J. Kelly, Am. Chem. Soc., Chicago Meeting, 57, (1967).Google Scholar
  121. 120.
    G. S. Levinson, Am. Chem. Soc., Chicago Meeting, 47 (1967).Google Scholar
  122. 121.
    H. Charosset, R. Frety, Y. Trambouze, and M. Prettre, Proc Int. Symp. React. Solids, 6th, 1968, J. W. Mitchell, ed., Wiley-Interscience, New York, (1969).Google Scholar
  123. 122.
    J. Deren and J. Stoch, J. Catal. 18, 249 (1970).CrossRefGoogle Scholar
  124. 123.
    A. Roman and B. Delmon, Compt. Rend. Ser. B 269, 801 (1969).Google Scholar
  125. 124.
    A. Roman and B. Delmon, Compt. Rend. Ser. B 271, 77 (1970).Google Scholar
  126. 125.
    H. Mine, M. Tokuda, and M. Ohtani, J. Jap. Inst. Metals 34, 814 (1970).Google Scholar
  127. 126.
    T. Kurosawa, R. Hasegawa, and T. Yagihashi, J. Jap. Inst. Metals 34, 481 (1970).Google Scholar
  128. 127.
    F. Chiesa and M. Rigaud, Can. J. Chem. Eng. 49, 617 (1971).CrossRefGoogle Scholar
  129. 128.
    J. Szekely and J. W. Evans, Met. Trans. 2, 1699 (1971).CrossRefGoogle Scholar
  130. 129.
    J. Szekely, C. I. Lin, and H. Y. Sohn, Chem. Eng. Sci. 28, 1975 (1973).CrossRefGoogle Scholar
  131. 130.
    H. Forestier and G. Nury, Proc. Int. Symp. React. Solids, p. 189 (1952).Google Scholar
  132. 131.
    J. Szekely and J. W. Evans, Chem. Eng. Sci. 26, 1901 (1971).CrossRefGoogle Scholar
  133. 132.
    J. W. Evans, S. Song, and C. E. Leon-Sucre, Met. Trans. 7B, 55 (1976).Google Scholar
  134. 133.
    V. N. Babushkin, A. I. Tikhonov, and V. I. Smirnov, Tsvet. Metal. (Engl. Transl.), 12, 13 (1971).Google Scholar
  135. 134.
    J. Szekely and A. Hastaoglu, Trans. Inst. Min. Met. 85, C78 (1976).Google Scholar
  136. 135.
    J. H. Krasuk and J. M. Smith, AIChE J. 18, 506 (1972).CrossRefGoogle Scholar
  137. 136.
    J. Szekely and C.I. Lin, Met. Trans. 7B, 493 (1976).Google Scholar
  138. 137.
    A. Bielanski, R. Dziembaj, and H. Urbanska, Bull. Acad. Pol. Sci. Ser. Sci. Chim. 19, 447(1971).Google Scholar
  139. 138.
    W. A. Oates and D. D. Todd, J. Aust. Inst. Met. 7, 109 (1962).Google Scholar
  140. 139a.
    A. S. Tumarev, L. A. Panyushin, and V.A. Pushkarev, Izv. Vysshikh. Uchebn. Zavedenii. Tsvetn. Met. 8, 39 (1965)Google Scholar
  141. 139b.
    A. S. Tumarev, L. A. Panyushin, and V.A. Pushkarev Chem. Abstr. 63, 9527C (1965).Google Scholar
  142. 140.
    A. R. Chesti and S. C. Sircar, Indian J. Tech. 9, 339 (1971).Google Scholar
  143. 141.
    A. K. Ashin, S. T. Rostovtsev, and O.L. Kostelov, Russian Metallurgy (Engl. Transl. S.I.C. London) 1, 18(1971).Google Scholar
  144. 142.
    R. V. Culver, I. G. Matthew, and E. C. R. Spooner, Aust. J. Chem. 15, 40 (1962).CrossRefGoogle Scholar
  145. 143.
    G. Haertling and R.L. Cook, J. Am. Ceram. Soc. 48, 35 (1965).CrossRefGoogle Scholar
  146. 144.
    H. A. Jones and H.S. Taylor, J. Phys. Chem. 27, 623 (1923).CrossRefGoogle Scholar
  147. 145.
    R. N. Pease and H.S. Taylor, J. Am. Chem. Soc. 43, 2179 (1921).CrossRefGoogle Scholar
  148. 146.
    N. J. Themelis and J.C. Yannopoulos, Trans. Met. Soc. AIME 236, 414 (1966).Google Scholar
  149. 147.
    C. Vassilev, T. Nikolov, and M. Chimbulev, Trans. Inst. Min. Met. 77, C36 (1968).Google Scholar
  150. 148.
    D. T. Hawkins and W.L. Worrell, Met. Trans. 1, 271 (1970).Google Scholar
  151. 149.
    V. A. Lavrenko, V. S. Zenkov, V. L. Tikush, and I.V. Uvarova, Russian Metallurgy (Engl. Transi. S.I.C. London) 4, 7 (1975).Google Scholar
  152. 150.
    C. Decroly and R. Winand, Trans. Inst. Min. Met. 77, C134 (1968)Google Scholar
  153. 151.
    I. J. Bear and R.J.T. Caney, Trans. Inst. Min. Met 85, C139 (1976).Google Scholar
  154. 152.
    R. Rawlings and U.J. Ibok, Trans. Inst. Min. Met. 83, C186 (1974).Google Scholar
  155. 153.
    J. O. Hougen, R.R. Reeves, and G.G. Manella, Ind. Eng. Chem. 48, 318 (1956).Google Scholar
  156. 154.
    C. E. Guger and F.S. Manning, Met. Trans. 2, 3083 (1971).CrossRefGoogle Scholar
  157. 155.
    B.G. Baldwin, J. Iron Steel Inst. 179, 30 (1955).Google Scholar
  158. 156.
    K. Otsuka and D. Kunii, J. Chem. Eng. Jap. 2, 46 (1969).CrossRefGoogle Scholar
  159. 157.
    R. A. Sharma, P. P. Bhatnagar, and T.J. Banerjee, Sci. Ind. Res. 16A, 225 (1957).Google Scholar
  160. 158.
    H. K. Kohl and B. Marincek, Arch. Eisenhüttenw. 36, 851 (1965).Google Scholar
  161. 159.
    H. K. Kohl and B. Marincek, Arch. Eisenhüttenw. 38, 493 (1967).Google Scholar
  162. 160.
    Y.K. Rao, Met. Trans. 2, 1439 (1971).Google Scholar
  163. 161.
    Y. Maru, Y. Kuramasu, Y. Awakura, and Y. Kondo, Met. Trans. 4, 2591 (1973).CrossRefGoogle Scholar
  164. 162.
    A. D. Kulkarni and W.L. Worrell, Met. Trans. 3, 2363 (1972).CrossRefGoogle Scholar
  165. 163.
    M. I. El-Guidny and W.G. Davenport, Met. Trans. 1, 1729 (1970).CrossRefGoogle Scholar
  166. 164.
    H. Y. Sohn and J. Szekely, Chem. Eng. Sci. 28, 1783 (1973).Google Scholar
  167. 165.
    Y.K. Rao, Chem. Eng. Sci. 29, 1435 (1974).CrossRefGoogle Scholar
  168. 166.
    Y. K. Rao and Y.K. Chuang, Chem. Eng. Sci. 29, 1933 (1974).CrossRefGoogle Scholar
  169. 167.
    Y. K. Rao and Y. K. Chuang, Met. Trans. 7B, 495 (1976).Google Scholar
  170. 168.
    T.E. Dancy, Howe Memorial Lecture presented at 106th AIME Annual Meeting, 1977, Atlanta, Ga.Google Scholar
  171. 169.
    R. Wild, Chem. Proc. Eng. 50, 55 (1969).Google Scholar
  172. 170.
    R. Lawrence, Jr., in Alternative Route to Steel, Proceedings of the Annual Meeting of the British Iron and Steel Institute, (1971), p. 43.Google Scholar
  173. 171.
    C. W. Sanzenbacher and D.C. Meissner, Can. Min. Metall. Bull. 69, 120 (1976).Google Scholar
  174. 172.
    P.P. Borthayre, paper presented at Latin American Iron and Steel Congress, 1974, Bogota, Columbia.Google Scholar
  175. 173.
    H.-D. Pantke, paper presented at the Latin American Direct Reduction Seminar, 1973, Mexico City, Mexico.Google Scholar
  176. 174.
    W.L. Davis Jr., J. Feinman, and J.H. Gross, paper presented at the Latin American Direct Reduction Seminar, 1973, Mexico City, Mexico.Google Scholar
  177. 175.
    H. A. Kulberg, paper presented at the 135th Ironmaking Conference, AIME, 1976, St. Louis.Google Scholar
  178. 176.
    K. Meyer, G. Heitmann, and W. Janke, paper presented at the 24th Ironmaking Conference, AIME, 1965, Pittsburgh.Google Scholar
  179. 177.
    G. Meyer and R. Wetzel, paper presented at 30th Ironmaking Conference, AIME, 1971, Pittsburgh.Google Scholar
  180. 178.
    V.J. Azbe, Rock Products 47(9), 68 (1944).Google Scholar
  181. 179.
    H.R.S. Britton, S.J. Gregg, and G.W. Winsor, Trans. Faraday Soc. 48, 63 (1952).CrossRefGoogle Scholar
  182. 180.
    E. P. Hyatt, I. B. Cutler, and M.E. Wadsworth, J. Am. Ceram. Soc. 41, 70 (1958).CrossRefGoogle Scholar
  183. 181.
    G. Narsimhan, Chem. Eng. Sci. 16, 7 (1961).CrossRefGoogle Scholar
  184. 182.
    T. R. Ingraham and P. Marier, Can. J. Chem. Eng. 41, 170 (1963).CrossRefGoogle Scholar
  185. 183.
    A.W.D. Hills, Chem. Eng. Sci. 23, 297 (1968).CrossRefGoogle Scholar
  186. 184.
    E. T. Turkdogan, R. G. Olson, H. A. Wriedt, and L.S. Darken, Trans. SME, AIME 254, 9 (1973).Google Scholar
  187. 185.
    Z. Asaki, Y. Fukunaka, T. Nagase, and Y. Kondo, Met. Trans. 5, 381 (1974).CrossRefGoogle Scholar
  188. 186.
    C. N. Satterfield and F. Feakes, AIChE J. 5, 115 (1959).CrossRefGoogle Scholar
  189. 187.
    E.H. Baker, J. Chem. Soc. p. 464 (1962).Google Scholar
  190. 188.
    A.W.D. Hills, Trans. Inst. Mining Met. 76, 241 (1967).Google Scholar
  191. 189.
    F. Thummler and W. Thomma, Met. Rev. 12 (115), 69 (1967).CrossRefGoogle Scholar
  192. 190.
    J. Frenkel, J. Phys. (USSR) 9, 385 (1945).Google Scholar
  193. 190a.
    R.L. Coble, J. Am. Ceram. Soc. 41, 55 (1958).CrossRefGoogle Scholar
  194. 190b.
    D.L. Johnson, J. Appl. Phys. 40, 192 (1969).CrossRefGoogle Scholar
  195. 190c.
    W.D. Kingery, J. Appl. Phys. 30, 301 (1959).CrossRefGoogle Scholar
  196. 191.
    I.B. Cutler, High Temperature Oxides, Vol. 3, A.M. Alper, ed., Academic Press, New York (1970).Google Scholar
  197. 192.
    R. L. Coble and J.E. Burke, Prog. Ceram. Sci. 3, 197–253 (1963).Google Scholar
  198. 193.
    S. Chapman and T.G. Cowling, The Mathematical Theory of Nonuniform Gases, Cambridge University Press, Cambridge (1939).Google Scholar
  199. 194.
    J. O. Hirschfelder, C. F. Curtiss, and R.B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York (1954).Google Scholar
  200. 195.
    P. Grieveson and E.T. Turkdogan, J. Phys. Chem. 68, 1547–1551 (1964).CrossRefGoogle Scholar
  201. 196.
    J.P. Stark, Acta Met. 14, 228–229 (1966).CrossRefGoogle Scholar
  202. 197.
    L.S. Darken, Trans. AIME 175, 184–194 (1948).Google Scholar
  203. 198.
    R. B. Bird, W. F. Stewart, and E.N. Lightfoot, Transport Phenomena, John Wiley and Sons, New York (1960).Google Scholar
  204. 199.
    H. Towers and J. Chipman, Trans. AIME 209, 769–773 (1957).Google Scholar
  205. 200.
    T. B. King and P. Koros, Trans. AIME 224, 299–306 (1962).Google Scholar
  206. 201.
    T. Saito and Y. Kawai, Sci. Rept. Tohuku University, Series A5, (1953), pp. 460–468.Google Scholar
  207. 202.
    P. Grieveson and E.T. Turkdogan, Trans. Met. Soc. AIME 230, 1609–1614 (1964).Google Scholar
  208. 203.
    K. Mori and K. Suzuki, Trans. Iron Steel Inst. Japan 9, 409–412 (1969).Google Scholar
  209. 204.
    D. P. Agarwal and D.R. Gaskell, Met. Trans. 6B, 263–267 (1975).Google Scholar
  210. 205.
    L. Yang, S. Kado, and G. Derge, Physical Chemistry of Process Metallurgy, G. R. St. Pierre, ed., Interscience Publishers, New York (1961), pp. 535–541.Google Scholar
  211. 206.
    S.W. Strauss, Nucl. Sci. Eng. 8, 362–363 (1960).Google Scholar
  212. 207.
    P. Kozakevitch, Surface Phenomena of Metals, Monog. 28, Society of Chemical Industry, London (1968), pp. 223–245.Google Scholar
  213. 208.
    K. Monma and H. Suto, Trans. Japan Inst. Metals 2, 148–153 (1961).Google Scholar
  214. 209.
    J. H. Swisher and E.T. Turkdogan, Trans. Met. Soc. AIME 239, 602–610 (1967).Google Scholar
  215. 210.
    G.R. Belton, Met. Trans. 7B, 35–42 (1976).Google Scholar
  216. 211.
    B.M.W. Trapnell, Chemisorption, Butterworths, London (1955).Google Scholar
  217. 212.
    T. B. King, Physical Chemistry of Melts, Inst. Min. Met., London (1953), pp. 35–41.Google Scholar
  218. 213.
    A. Adachi, K. Ogino, and T. Suetaki, Tech. Rept. Osaka Univ. 14, 713–719 (1964).Google Scholar
  219. 214.
    P. Kozakevitch, in Liquids: Structure, Properties, Solid Interactions, T.J. Hughel, ed., Elsevier Publishing Co., Amsterdam (1965), pp. 243–280.Google Scholar
  220. 215.
    G. Cavalier, Proc. Nad. Phys. Lab. 2, 4D (1958).Google Scholar
  221. 216.
    E. T. Turkdogan and P.M. Bills, Am. Ceram. Soc. Bull. 39, 682–687 (1960).Google Scholar
  222. 217.
    P. Kozakevitch, in Physical Chemistry of Process Metallurgy, G.R. St. Pierre, ed., Interscience Publishers, New York (1961), pp. 97–116.Google Scholar
  223. 218.
    P. Kozakevitch, Rev. Met. 47, 201–210 (1950).Google Scholar
  224. 219.
    P. Kozakevitch, Rev. Met. 51, 569–587 (1954).Google Scholar
  225. 220.
    C. F. Cooper and J.A. Kitchener, J. Iron Steel Inst. 193, 48–55 (1959).Google Scholar
  226. 221.
    C. F. Cooper and C.L. McCabe, Res. Rept. Metals Research Laboratory, Carnegie Inst. Tech., Pittsburgh, Pa. (Sept. 1959).Google Scholar
  227. 222.
    J. H. Swisher and C.L. McCabe, Trans. Met. Soc. AIME 230, 1669–1675 (1964).Google Scholar
  228. 223.
    H. Eyring, J. Chem. Phys. 3, 107–115 (1935).CrossRefGoogle Scholar
  229. 224.
    S. Glasstone, K.J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
  230. 225.
    L. S. Darken and E.T. Turkdogan, in Heterogeneous Kinetics at Elevated Temperatures, G. R. Belton and W.L. Worrell, eds., Plenum, New York (1970), pp. 25–95.Google Scholar
  231. 226.
    P. Kozakevitch and G. Urbain, Rev. Met. 60, 143–156 (1963).Google Scholar
  232. 227.
    R. D. Pehlke and J.F. Elliott, Trans. Met. Soc. AIME 227, 844–855 (1963).Google Scholar
  233. 228.
    H. Schenck, M. G. Frohberg, and H. Heinemann, Arch. Eisenhüttenw. 33, 593–600 (1962).Google Scholar
  234. 229.
    E. T. Turkdogan and P. Grieveson, J. Electrochem. Soc. 114, 59–64 (1967).CrossRefGoogle Scholar
  235. 230.
    T. Fuwa, S. Banya, and T. Shinohara, Tetsu to Hagane, 54, S436 (1968).Google Scholar
  236. 231.
    K. Mori and K. Suzuki, Trans. Iron Steel Inst. Japan 10, 232–238 (1970).Google Scholar
  237. 232.
    K. Narita, S. Koyama, T. Makino, and M. Okamura, Trans. Iron Steel Inst. Japan 12, 444–453 (1972).Google Scholar
  238. 233a.
    M. Inouye and T. Choh, Trans. Iron Steel Inst. Japan 8, 134–145 (1968);Google Scholar
  239. 233b.
    M. Inouye and T. Choh, Trans. Iron Steel Inst. Japan 12, 189–196 (1972).Google Scholar
  240. 234.
    R. G. Mowers and R. D. Pehlke, Met. Trans. 1, 51–56 (1970).Google Scholar
  241. 235.
    E. T. Turkdogan and J. V. Vinters, Met. Trans. 3, 1561–1574 (1972).CrossRefGoogle Scholar
  242. 236.
    L. A. Baker, N. A. Warner, and A. E. Jenkins, Trans. Met. Soc. AIME 239, 857–864 (1967).Google Scholar
  243. 237.
    R. J. Fruehan and L. J. Martonik, Met. Trans. 5, 1027–1032 (1974).CrossRefGoogle Scholar
  244. 238.
    D. R. Sain and G. R. Belton, Met. Trans. 7B, 235–244 (1976).Google Scholar
  245. 239.
    A. Forster and F. D. Richardson, Trans. Inst. Min. Metall. 84, C116–122 (1975).Google Scholar
  246. 240.
    E. T. Turkdogan, P. Grieveson, and J. F. Beisler, Trans. Met. Soc. AIME 227, 1265–1274 (1963).Google Scholar
  247. 241.
    T. B. King and S. Ramachandran, in Physical Chemistry of Steelmaking, J. F. Elliott, ed., John Wiley and Sons, New York (1958), pp. 125–133.Google Scholar
  248. 242.
    A. Nilas and M. G. Frohberg, Arch. Eisenhüttenw. 41, 951–956 (1970).Google Scholar
  249. 243.
    K. M. Goldman, G. Derge, and W. O. Philbrook, Trans. AIME 200, 534–540 (1954).Google Scholar
  250. 244.
    E. T. Turkdogan and M. L. Pearce, Trans. Met. Soc. AIME 227, 940–949 (1963).Google Scholar
  251. 245.
    F. D. Richardson, Physical Chemistry of Melts in Metallurgy, Academic Press, New York (1974).Google Scholar
  252. 246.
    E. T. Turkdogan and P. Grieveson, Trans. Met. Soc. AIME 224, 316–323 (1962).Google Scholar
  253. 247.
    R. G. Ward, J. Iron Steel Inst. (London) 201, 11–15 (1963).Google Scholar
  254. 248.
    E. S. Machlin, Trans. Met. Soc. AIME 218, 314–326 (1960).Google Scholar
  255. 249.
    E. D. Tarapore and J. W. Evans, Met. Trans. 7B, 343–351 (1976).Google Scholar
  256. 250.
    R. G. Ward and T. D. Aurini, J. Iron Steel Inst. (London) 204, 920–923 (1966).Google Scholar
  257. 251.
    R. J. Fruehan and E. T. Turkdogan, Met. Trans. 2, 895–902 (1971).CrossRefGoogle Scholar
  258. 252.
    G. R. Belton, R. J., Fruehan, and E. T. Turkdogan, Met. Trans. 3, 596–598 (1972).Google Scholar
  259. 253.
    D. C. Boyd, W. C. Phelps, and M. T. Hepworth, Met. Trans. 6B, 87–93 (1975).Google Scholar
  260. 254.
    E. T. Turkdogan, P. Grieveson, and L. S. Darken, J. Phys. Chem. 67, 1647–1654 (1963).CrossRefGoogle Scholar
  261. 255.
    P. A. Distin and S. G. Whiteway, Can. Met. Q. 9, 419–426 (1970).Google Scholar
  262. 256.
    G. J. W. Kor and E. T. Turkdogan, Met. Trans. 6B, 411–418 (1975).Google Scholar
  263. 257.
    E. T. Turkdogan, Trans. Met. Soc. AIME 230, 740–750 (1964).Google Scholar
  264. 258a.
    D.E. Rosner, Inst. J. Heat Mass Transfer 10, 1267–1279 (1967);CrossRefGoogle Scholar
  265. 258b.
    D. E. Rosner and M. Epstein, Inst. J. Heat Mass Transfer 13. 1393–1414 (1970).CrossRefGoogle Scholar
  266. 259.
    A. W. D. Hills and J. Szekely, J. Chem. Eng. Sci. 19, 79–81 (1964).CrossRefGoogle Scholar
  267. 260.
    E. T. Turkdogan and K. C. Mills, Trans. Met. Soc. AIME 230, 750–753 (1964).Google Scholar
  268. 261.
    L. S. Nelson and H. W. Levine, in Heterogeneous Kinetics at Elevated Temperatures, G. R. Belton and W. L. Worrell, eds., Plenum, New York (1970), pp. 503–517.Google Scholar
  269. 262.
    D. G. C. Robertson and B. B. Staples, in Process Engineering of Pyrometallurgy, M. J. Jones, ed., Inst. Min. Metall., London (1974), pp. 51–59.Google Scholar
  270. 263.
    W. F. Porter, F. D. Richardson, and K. N. Subramanian, in Heat and Mass Transfer in Process Metallurgy, A. W. D. Hills, ed., Inst. Min. Metall., London (1967), pp. 79–114.Google Scholar
  271. 264.
    K. N. Subramanian and F. D. Richardson, J. Iron Steel Inst. (London) 206, 576–583 (1968).Google Scholar
  272. 265a.
    J. K. Brimacombe and F. D. Richardson, Trans. Inst. Min. Metall. 80, C140–151 (1971);Google Scholar
  273. 265b.
    J. K. Brimacombe and F. D. Richardson, Trans. Inst. Min. Metall. 82, C63–72 (1973).Google Scholar
  274. 266.
    J. T. Davies, Turbulence Phenomena, Academic Press, New york (1972).Google Scholar
  275. 267.
    W. O. Philbrook and L. D. Kirkbride, Trans. AIME 206, 351–356 (1956).Google Scholar
  276. 268.
    T. E. Brower and B. M. Larsen, Trans. AIME 172, 137, 164 (1947).Google Scholar
  277. 269.
    E. T. Turkdogan, Chem. Eng. Sci. 21, 1133–1144 (1966).CrossRefGoogle Scholar
  278. 270.
    D. Poggi, R. Minto, and W. G. Davenport, J. Metals, AIME 21, 40–45 (1969).Google Scholar
  279. 271.
    P. Kozakevitch and P. Leroy, Rev. Met. 51. 203–209 (1954).Google Scholar
  280. 272.
    P. Kozakevitch et al., Congrés International sur les Aciers a’ L’Oxygéne, Le Touqet: Inst. Res. Sidérurgie, 1963, pp. 248–263.Google Scholar
  281. 273.
    P. Kozakevitch, Open Hearth Proc. AIME 52, 64–75 (1969).Google Scholar
  282. 274.
    H. W. Meyer, W. F. Porter, G. C. Smith, and J. Szekely, J. Metals, AIME 20, 35–42 (1968).Google Scholar
  283. 275.
    B. Trentini, Trans. Met. Soc. AIME 242, 2377–2388 (1968).Google Scholar
  284. 276.
    D. J. Price, in Process Engineering of Pyrometallurgy, M. J. Jones, ed., Inst. Min. Metall., (1974), pp. 8–15.Google Scholar
  285. 277.
    S. Okano et al., Intern. Conf. Science and Technology of Iron and Steel, Tokyo, 1970, Part I, pp. 227–231.Google Scholar
  286. 278.
    K. N. Subramanian and N. J. Themelis, J. Metals, AIME 24, 33–38 (1972).Google Scholar
  287. 279.
    R. M. Davies and G. I. Taylor, Proc. Royal Soc. A200, 375–390 (1950).CrossRefGoogle Scholar
  288. 280.
    M. H. I. Baird and J. F. Davidson, Chem. Eng. Sci. 17, 87–93 (1962).CrossRefGoogle Scholar
  289. 281.
    P. H. Calderbank, Chem. Eng. pp. CE209–233 (1967).Google Scholar
  290. 282.
    F. Yoshida and K. Akita, AIChE J. 11, 9–13 (1965).CrossRefGoogle Scholar
  291. 283.
    I. Leibson, E. G. Holcomb, A. G. Cacoso, and J. J. Jacmic, AIChE J. 2, 296–306 (1956).CrossRefGoogle Scholar
  292. 284.
    A. C. Lochiel and P. H. Calderbank, Chem. Eng. Sci. 19, 485–503 (1964).CrossRefGoogle Scholar
  293. 285.
    R. I. Guthrie and A. V. Bradshaw, Trans. Met. Soc. AIME 245, 2285–2292 (1969).Google Scholar
  294. 286.
    V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962).Google Scholar
  295. 287.
    S. Hu and R. C. Kintner, AIChE J. 1, 42–48 (1955).CrossRefGoogle Scholar
  296. 288.
    F. D. Richardson, Iron Coal 183, 1105–1116 (1961).Google Scholar
  297. 289.
    R. J. Fruehan, Ironmaking Steelmaking 3, 33–36 (1976).Google Scholar
  298. 290a.
    E. T. Turkdogan, Trans. Inst. Min. Met. 83, C67–81 (1974);Google Scholar
  299. 290b.
    E. T. Turkdogan, Open Hearth Proc. AIME 58, 405–425(1975).Google Scholar
  300. 291.
    J. C. Fulton and S. Ramachandran, Electr. Furnace Steel Proc. AIME 30, 43–50 (1972).Google Scholar
  301. 292.
    R. J. Choulet, F. S. Death, and R. N. Dokken, Can. Met. Q. 10, 129–136 (1971).Google Scholar
  302. 293.
    R. J. Fruehan, Ironmaking Steelmaking 3, 153–158 (1976).Google Scholar
  303. 294.
    J. J. Byerley, G. L. Rempel, and N. Takebe, Met. Trans. 5, 2501–2506 (1974).CrossRefGoogle Scholar
  304. 295.
    U. Kuxmann and T. Z. Benecke, Erzbergb. Metallhuett. Wes. 19, 215–221 (1966).Google Scholar
  305. 296.
    N. J. Themelis and P. R. Schmidt, Trans. Met. Soc. AIME 239, 1313–1318 (1967).Google Scholar
  306. 297.
    A. V. Bradshaw, Vide 23, 376–415 (1968).Google Scholar
  307. 298.
    P. A. Distin, G. D. Hallett, and F. D. Richardson, J. Iron Steel Inst. (London) 206, 821–833 (1968).Google Scholar
  308. 299.
    A. V. Bradshaw and F. D. Richardson, Vacuum Degassing of Steel, Special Report 92, The Iron and Steel Institute, London (1965), pp. 24–44.Google Scholar
  309. 300.
    J. H. Flux, Vacuum Degassing of Steel, Special Report 92, The Iron and Steel Institute, London (1965), pp. 1–23.Google Scholar
  310. 301.
    R. G. Olsson and E. T. Turkdogan, J. Iron Steel Inst. (London) 211, 1–8 (1973).Google Scholar
  311. 302.
    H. S. Philbrick, Vacuum Metallurgy Conference 1963, American Vacuum Soc., Boston (1964), p. 314.Google Scholar
  312. 303.
    E. T. Turkdogan, J. Iron Steel Inst. (London) 210, 21–36 (1972).Google Scholar
  313. 304.
    M. Volmer and A. Weber, Z. Phys. Chem. 119, 277–301 (1926).Google Scholar
  314. 305.
    R. Becker and W. Doring, Ann. Phys. 24(5), 719–752 (1935),CrossRefGoogle Scholar
  315. 306.
    E. R. Buckle, Proc. Royal Soc. (London), A261, 189–196 (1961).CrossRefGoogle Scholar
  316. 307.
    M. L. Turpin and J. F. Elliott, J. Iron Steel Inst. (London), 204, 217–225 (1966).Google Scholar
  317. 308.
    L. von Bogdandy et al., Arch. Eisenhüttenw. 32, 451–460 (1961).Google Scholar
  318. 309a.
    G. K. Sigworth and J. F. Elliott, Met. Trans. 4, 105–113 (1973);CrossRefGoogle Scholar
  319. 309b.
    G. K. Sigworth and J. F. Elliott, Can. Met. Q. 11, 337–349 (1972).Google Scholar
  320. 310.
    G. Forward and J. F. Elliott, Met. Trans. 1, 2889–2897 (1970).Google Scholar
  321. 311.
    E. T. Turkdogan, J. Iron Steel Inst. (London) 204, 914–919 (1966).Google Scholar
  322. 312.
    R. K. Iyengar and W. O. Philbrook, Met. Trans. 3, 1823–1830 (1972).CrossRefGoogle Scholar
  323. 313.
    N. Lindskog and H. Sandberg, Scand. J. Metall. 2, 71–78 (1973).Google Scholar
  324. 314.
    T. Emi, Scand. J. Metall. 4, 1–8 (1975).Google Scholar
  325. 315.
    E. T. Turkdogan, in Sulfide Inclusions in Steel, J. J. de Barbadillo and E. Snape, eds., American Society of Metals, Metals Park, Ohio (1975), pp. 1–22.Google Scholar
  326. 316.
    C. Wagner, Z Elektrochem. 65, 581–591 (1961).Google Scholar
  327. 317.
    J. C. Billington and F. D. Richardson, Trans. Inst. Min. Met. 65, 273–297 (1955–1956).Google Scholar
  328. 318.
    M. Nagamori, P. J. Mackey, and P. Tarassoff, Met. Trans. 6B, 295–301 (1975).Google Scholar
  329. 319.
    E. Scheil, Z Metallk. 34, 70–72 (1942).Google Scholar
  330. 320.
    E. T. Turkdogan, Trans. Met. Soc. AIME 233, 2100–2112 (1965).Google Scholar
  331. 321.
    E. T. Turkdogan and R. A. Grange, J. Iron Steel Inst. (London) 208, 482–494 (1970).Google Scholar
  332. 322.
    D. Burns and J. Beech, Ironmaking Steelmaking, 1, 239–250 (1974).Google Scholar
  333. 323.
    G. J. W. Kor and E. T. Turkdogan, Met. Trans. 3, 1269–1278 (1972).CrossRefGoogle Scholar
  334. 324.
    J. C. Yarwood, M. C. Flemings, and J. F. Elliott, Met. Trans. 2, 2573–2581 (1971).CrossRefGoogle Scholar
  335. 325.
    W. G. Pfann, Zone Melting, Wiley, New York (1966).Google Scholar
  336. 326.
    M. C. Flemings, Solidification Processing, McGraw-Hill, New York (1974).Google Scholar
  337. 327.
    M. Zief and W. R. Wilcox, Fractional Solidification, M. Dekker, New York (1967).Google Scholar
  338. 328.
    H. Schildknecht, Zone Melting, Academic Press, New York (1966).Google Scholar
  339. 329.
    A. Lawley, Zone refining, in Techniques of Metals Research, Vol. 1, Pt. 2, 1968.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • S. E. Khalafalla
    • 1
  • J. W. Evans
    • 2
  • C.-H. Koo
    • 2
  • H. Y. Sohn
    • 3
  • E. T. Turkdogan
    • 4
  • I. B. Cutler
    • 5
  • C. H. Pitt
    • 3
  1. 1.Twin Cities Metallurgy Research CenterU.S. Bureau of MinesTwin CitiesUSA
  2. 2.Department of Materials Science and Mineral EngineeringUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of Metallurgy and Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA
  4. 4.Research LaboratoryU.S. Steel CorporationMonroevilleUSA
  5. 5.Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations