Hydrometallurgical Processes

  • Milton E. Wadsworth
  • Jan D. Miller


Although the classification of hydrometallurgical processes is arbitrary, it is convenient to consider two general areas: (1) the leaching of ores, and (2) the leaching of concentrates. In some cases these ores or concentrates may be subjected to some pretreatment such as roasting or reduction to improve the extraction. By definition, an ore deposit is a naturally occurring mineral deposit which can be treated economically. Under this definition the leaching of low-grade materials, normally considered to be waste products, would fall into the first category and would, if leached at a profit, be termed an ore. Ores within this definition may be subdivided into low-grade materials and moderate-to-high-grade ores. The first would refer to materials of sufficiently low grade that it is not economic to subject them to additional treatment such as fine grinding and concentration, although sizing may be carried out. The diagram in Figure 3.1–1 illustrates the classification of hydro-metallurgical treatment according to the above definition.


Mass Transfer Coefficient Surface Deposit Mixed Potential Hydrometallurgical Process Cementation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. F. Wenzel, Lehre von der Chemischen Affinität der Körper, reported by A. Findlay, A Hundred Years of Chemistry, 2nd ed., Duckworth, London (1977).Google Scholar
  2. 2.
    L. F. Wilhelmy, Ann. Physick 81, 413 (1850).Google Scholar
  3. 3.
    J. H. van’Hoff, Etudes de Dynamique Chimique, F. Muller and Company, Amsterdam (1884).Google Scholar
  4. 4.
    S. Arrhenius, Z Phys. Chem. 4, 226 (1889).Google Scholar
  5. 5.
    S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill Book Company, New York (1941), pp. 400–401.Google Scholar
  6. 6.
    A. Fick, Pogg. Ann. 94, 59 (1855).CrossRefGoogle Scholar
  7. 7.
    C. L. Wagner, Z. Phys. Chem. 71, 401 (1910).Google Scholar
  8. 8.
    J. Lebrun, Bull. Sci. Acad. Roy. Belge 953 (1913).Google Scholar
  9. 9.
    G. F. Kortum and J. O’M. Bockris, Textbook of Electrochemistry, Vol. 2, Elsevier Publishing Company, Amsterdam (1951), pp. 403–405.Google Scholar
  10. 10.
    J. Halpern, J. Metals, Trans. AIME, 209, 280 (1957).Google Scholar
  11. 11.
    K. J. Vetter, Electrochemical Kinetics, Academic Press, New York (1967), pp. 189–193.Google Scholar
  12. 12.
    V. G. Levich, Physiochemical Hydrodynamics, 2nd ed., Moscow (1959).Google Scholar
  13. 13.
    L. Prandtl, Phys. Z. 11, 1072 (1910).Google Scholar
  14. 14.
    W. Jost, Diffusion in Solids, Liquids and Gases, Academic Press, Inc., New York (1952).Google Scholar
  15. 15.
    S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
  16. 16.
    C. Wagner, J. Electro. Chem. 97, 71 (1950).CrossRefGoogle Scholar
  17. 17.
    W. D. Spencer and B. Topley, J. Chem. Soc. 50, 2633 (1929).CrossRefGoogle Scholar
  18. 18.
    H. Eyring, R. E. Powell, G. H. Duffy, and R. R. Parlin, Chem. Rev. 45, 145 (1949).CrossRefGoogle Scholar
  19. 19.
    R. Schuhmann Jr., Trans. AIME 17, 22–25 (1960).Google Scholar
  20. 20.
    L. Beckstead et al, Acid ferric sulfate leaching of attritor-ground chalcopyrite concentrates, International Symposium on Copper Extraction and Refining, J. C. Yannopoulos and J. C. Agarwal, eds., 105th AIME Annual Meeting, Las Vegas, Nevada, February 22–26, 1976.Google Scholar
  21. 21.
    P. H. Yu, C. K. Hanson, and M. E. Wadsworth, Met. Trans. 4, 213–44 (1973).CrossRefGoogle Scholar
  22. 22.
    M. E. Wadsworth, Trans. Met. Soc. 245, 1381–1394 (1969).Google Scholar
  23. 23.
    R. M. Nadkarni and M. E. Wadsworth, Trans. Met. Soc. 239, 1066–1074 (1967).Google Scholar
  24. 24.
    J. P. Baur, H. L. Gibbs, and M. E. Wadsworth, U.S.B.M. RI 7823 (1974).Google Scholar
  25. 25.
    R. Mishra, Kinetics of oxidation of sulfide minerals through thin aqueous films, Ph.D. Dissertation, Department of Mining, Metallurgical and Fuels Engineering, University of Utah, Salt Lake City, Utah (1972).Google Scholar
  26. 26.
    E. Posnjak and H. E. Merwin, J. Am. Chem. Soc. 44, 1965 (1922).CrossRefGoogle Scholar
  27. 27.
    C. Wagner and K. Grunewald, Z. Physik. Chem. (B) 40, 455 (1938).Google Scholar
  28. 28.
    S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill Book Company, New York (1941), pp. 184–191.Google Scholar
  29. 29.
    K. J. Vetter, The determination of electrode reaction mechanisms by the electrochemical reaction orders, in Transactions of the Symposium on Electrode Processes, E. Yeager, ed., John Wiley and Sons, Inc., New York, (1959), pp. 47–65.Google Scholar
  30. 30.
    K. J. Vetter, Electrochemical KineticsTheoretical and Experimental Aspects, Academic Press, New York (1967).Google Scholar
  31. 31.
    J. A. V. Butler, Trans. Faraday Soc. 19, 729–733 (1924).CrossRefGoogle Scholar
  32. 32.
    T. Erdey-Gruz and M. Volmer, Z. Physick. Chem. (A) 150, 203–213 (1930).Google Scholar
  33. 33.
    J. Tafel, Z. Physik. Chem. 50, 641–712 (1905).Google Scholar
  34. 34.
    P. Marcantonio, Kinetics of dissolution of chalcite in ferric sulfate solutions, Ph.D. Thesis, Department of Mining, Metallurgical and Fuels Engineering, University of Utah (1975), in preparation.Google Scholar
  35. 35.
    S. B. Christy, Trans. AIME 26, 735 (1896).Google Scholar
  36. 36.
    S. B. Christy, Trans. AIME 30, 864 (1900).Google Scholar
  37. 37.
    B. Boonstra, Korros. Metallschutz 19, 146 (1943).Google Scholar
  38. 38.
    P. F. Thompson, Trans. Electrochem. Soc. 91, 41 (1947).CrossRefGoogle Scholar
  39. 39.
    F. Habashi, Principles of Extractive Metallurgy, Vol. 2, Gordon and Breach, New York (1970).Google Scholar
  40. 40.
    V. Kudryk and H. H. Kellogg, J. Metals, 6, 541 (1954).Google Scholar
  41. 41.
    G. A. Deitz and J. Halpern, J. Metals, 5, 1109 (1953).Google Scholar
  42. 42.
    A. E. Hultquist, The reaction kinetics of the corrosion of copper by cyanide solutions, M.S. Thesis, University of Utah, Salt Lake City, Utah (1957).Google Scholar
  43. 43.
    J. Halpern, J. Electrochem. Soc. 100, 421 (1953).CrossRefGoogle Scholar
  44. 44.
    J. Halpern, H. Milants and D. R. Wiles, J. Electrochem. Soc. 106, 657 (1959).CrossRefGoogle Scholar
  45. 45.
    R. Shimakage and S. Morioka, Trans. Inst. Min. Met. 80, C228 (1971).Google Scholar
  46. 46.
    D. R. McKay and J. Halpern, Trans. AIME 212, 301 (1958).Google Scholar
  47. 47.
    E. Peters and H. Majima, Can. Met. Quart. 7, 111 (1968).Google Scholar
  48. 48.
    C. T. Mathews and R. G. Robins, Aust. Chem. Eng. pp. 21–25, Aug. (1972).Google Scholar
  49. 49.
    E. Peters, I. H. Warren, and H. Veltman, Extractive met-hydromet: theory and practice, Tutorial symposium, M. T. Hepworth, ed., Sect. V, University of Denver (1972).Google Scholar
  50. 50.
    M. B. Shirts, J. K. Winter, P. A. Bloom, and G. M. Potter, U.S. B. M., RI 7953 (1974).Google Scholar
  51. 51.
    J. B. Hiskey and M. E. Wadsworth, Met. Trans. AIME 613, 183–190 (1975).CrossRefGoogle Scholar
  52. 52.
    M. E. Wadsworth, So. Afr. Min. Sci. Eng., 4, 36 (1972).Google Scholar
  53. 53.
    M. E. Wadsworth, Ann. Rev. Phys. Chem. 23, 355–384 (1972).CrossRefGoogle Scholar
  54. 54.
    S. L. Pohlman and F. A. Olson, A kinetic study of acid leaching of chrysocolla using a weight loss technique, in Solution Mining Symposium, F. F. Aplan, W. A. McKinney, and A. D. Pernichele, eds., Soc. Min. Engr. AIME, Dallas, Texas, February 25–27, 1974, Soc. Min. Engr. AIME, New York (1974), pp. 46–60.Google Scholar
  55. 55.
    M. E. Wadsworth and D. R. Wadia, Trans. AIME 209, 755 (1955).Google Scholar
  56. 56.
    T. L. Mackay and M. E. Wadsworth, Trans. AIME 212, 597 (1958).Google Scholar
  57. 57.
    F. A. Forward and J. Halpern, Trans. Can. Inst. Min. Met. 56, 344–50 (1953).Google Scholar
  58. 58.
    F. Habashi and G. A. Thurston, Energ. Nucl. (Milan) 14, 238–244 (1967).Google Scholar
  59. 59.
    M. J. Nicol, C. R. S. Needes and N. P. Finkelstein, Electrochemical model for the leaching of uranium dioxide, Extract from Leaching and Reduction in Hydrometallurgy, The Institute of Mining and Metallurgy, The Chameleon Press Ltd., London (1975).Google Scholar
  60. 60.
    J. R. Glastonbury, in Advances in Extractive Metallurgy, Inst. Mining and Metallurgy, London (1968), pp. 908–917.Google Scholar
  61. 61.
    R. W. Bartlett, Met. Trans. 3, 913 (1972).CrossRefGoogle Scholar
  62. 62.
    R. L. Braun, A. E. Lewis, and M. E. Wadsworth, Met. Trans. 5, 1717 (1974).CrossRefGoogle Scholar
  63. 63.
    R. J. Roman, B. R. Benner, and G. W. Becker, Trans. Soc. Min. Eng. 256, 247 (1974).Google Scholar
  64. 64.
    B. W. Madsen, M. E. Wadsworth, and R. D. Groves, Trans. Soc. Min. Eng. 258, 69–74 (1974).Google Scholar
  65. 65.
    L. M. Cathles and J. Apps, A model of the dump leaching process that incorporates by physics and chemistry, Kennecott Copper Corporation, presented at AIChE Symposium on Modeling and Analysis of Dump and In-Situ Leaching Operations, Salt Lake City, Utah, August 19, 1974.Google Scholar
  66. 66.
    L. White, Eng. Mining J. 73–82 (1975).Google Scholar
  67. 67.
    K. Vetter, Electrochemical Kinetics, Academic Press, New York (1967).Google Scholar
  68. 68.
    J. Bockris and A. Reddy, Modern Electrochemistry, Vols. 1 and 2, Plenum, New York (1973).CrossRefGoogle Scholar
  69. 69.
    M. Wadsworth, Extractive Metallurgy Lecture, Trans. TMS/AIME 245, 1381 (1969).Google Scholar
  70. 70.
    G. Power, Cementation reactions, Ph.D. Thesis, University of Western Australia, Nedlands, Western Australia (1975).Google Scholar
  71. 71.
    T. Hurlen, Acta Chem. Scand. 14, 1533 (1960);CrossRefGoogle Scholar
  72. 71a.
    T. Hurlen, Acta Chem. Scand. 15, 630 (1961); andCrossRefGoogle Scholar
  73. 71b.
    T. Hurlen, Acta Chem. Scand. 16, 1337 (1962).CrossRefGoogle Scholar
  74. 72.
    J. Newman, Electrochemical Systems, Prentice-Hall, Englewood Cliffs, N.J. (1973).Google Scholar
  75. 73.
    V. Levich, Physiocochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962).Google Scholar
  76. 74.
    A. Riddiford, Ad. Electrochem. Electrochem. Eng., 4, 47 (1966).Google Scholar
  77. 75.
    P. Strickland and F. Lawson, Proc. Aust. Inst. Mining Met. 237, 71 (1971).Google Scholar
  78. 76.
    M. Eisenberg, C. Tobias, and C. Wilke, J. Electrochem. Soc. 101, 306 (1954).CrossRefGoogle Scholar
  79. 77.
    I. Cornet and R. Kappeser, Trans. Inst. Chem. Eng. 47, 194 (1969).Google Scholar
  80. 78.
    D. Gabe and D. Robinson, Electrochemica Acta, 17, 1121 (1972).CrossRefGoogle Scholar
  81. 79.
    R. Diessler, N.A.C.A. Report 1210 (1955).Google Scholar
  82. 80.
    J. Miller and L. Beckstead, Trans. TMSIAIME 4, 1967 (1973).Google Scholar
  83. 81.
    R. Glickman, H. Mouguin, and C. King, J. Electrochem. Soc. 100, 580 (1953).CrossRefGoogle Scholar
  84. 82.
    T. Ingraham and R. Kerby, Trans. TMSIAIME 245, 17 (1969).Google Scholar
  85. 83.
    E. von Hahn and T. Ingraham, Trans. TMSIAIME, 239, 1895 (1967).Google Scholar
  86. 84.
    W. Ranz and W. Marshall, Chem. Eng. Prog., 48, 141 (1952).Google Scholar
  87. 85.
    P. Harriott, AIChE J. 8(1), 93 (1962).CrossRefGoogle Scholar
  88. 86.
    R. Nadkarni, C. Jelden, K. Bowles, H. Flanders, and M. Wadsworth, Trans. TMS/AIME, 239, 581 (1967).Google Scholar
  89. 87.
    R. Naybour, J. Electrochem. Soc. Electrochem. Technol. 116, 520 (1969).Google Scholar
  90. 88.
    J. Calara, M.S. Thesis, University of Philippines, Manila, May (1970).Google Scholar
  91. 89.
    R. Miller, Ph.D. Thesis, University of Utah, Salt Lake City, Utah (1968).Google Scholar
  92. 90.
    E. von Hahn and T. Ingraham, Trans. TMS/AIME, 236, 1098 (1966).Google Scholar
  93. 91.
    W. Fisher and R. Groves, U.S.B.M. RI 8098 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Milton E. Wadsworth
    • 1
  • Jan D. Miller
    • 1
  1. 1.Department of Metallurgy and Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations