Fundamentals of the Kinetics of Heterogeneous Reaction Systems in Extractive Metallurgy

  • H. Y. Sohn


Changes that must be effected to extract metal values from mineral ores generally occur through heterogeneous processes. Although most reactions involve a rather complex set of steps and may require individual treatments, there are certain elementary aspects of the overall reaction that are common to a wide range of reactions. Such aspects are amenable to systematic treatment. In this chapter we shall examine these elementary steps and their application to a number of individual reaction systems, with an emphasis on noncatalytic fluid-solid reactions. Understanding these individual systems is essential for the analyses of more complex systems; thus this chapter lays a foundation for analyzing the rates of actual processes in extractive metallurgy to be discussed in subsequent chapters.


Fluid Reactant Product Layer Pore Diffusion Extractive Metallurgy External Mass Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York (1960).Google Scholar
  2. 2.
    E. E. Petersen, Chemical Reaction Analysis, Prentice-Hall, Englewood Cliffs, N.J. (1965).Google Scholar
  3. 3.
    C. N. Satterfield, Mass Transfer in Heterogeneous Catalysis, MIT Press, Cambridge, Mass. (1970).Google Scholar
  4. 4.
    J. Szekely and N. J. Themelis, Rate Phenomena in Process Metallurgy, Wiley, New York (1971).Google Scholar
  5. 5.
    J. Szekely, J. W. Evans, and H. Y. Sohn, Gas-Solid Reactions, Academic Press, New York (1976).Google Scholar
  6. 6.
    V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962).Google Scholar
  7. 7.
    D. Kunii and O. Levenspiel, Fluidization Engineering, Wiley, New York (1969).Google Scholar
  8. 8.
    R. C. Reid and T. K. Sherwood, Properties of Gases and Liquids, 2nd ed., McGraw-Hill, New York (1966).Google Scholar
  9. 9.
    J. M. Smith, Chemical Engineering Kinetics, 2nd ed., McGraw-Hill, New York (1970).Google Scholar
  10. 10.
    E. A. Mason and T. R. Marrero, Adv. At. Mol. Phys. 6, 155–232 (1970).CrossRefGoogle Scholar
  11. 11.
    T. R. Marrero and E. A. Mason, J. Phys. Chem. Ref. Data 1, 1–118 (1972).CrossRefGoogle Scholar
  12. 12.
    J. M. Thomas and W. J. Thomas, Introduction to the Principles of Heterogeneous Catalysis, Academic Press, New York (1967).Google Scholar
  13. 13.
    O. A. Hougen and K. M. Watson, Chemical Process Principles, Part 3, Kinetics and Catalysis, Wiley, New York (1947).Google Scholar
  14. 14.
    K. J. Laidler, in Catalysis, P. H. Emmett, ed., Vol. 1, Reinhold, New York (1954), pp. 75, 119,Google Scholar
  15. 14.
    K. J. Laidler, in Catalysis, P. H. Emmett, ed., Vol. 1, Reinhold, New York (1954), pp. 75, 195.Google Scholar
  16. 15.
    J. Francl and W. D. Kingery, J. Am. Ceram. Soc. 37, 99 (1954).CrossRefGoogle Scholar
  17. 16.
    A. V. Luikov, A. G. Shashkov, L. L. Vasillies, and Y. E. Fraimon, Int. J. Heat Mass Transfer 11, 117 (1968).CrossRefGoogle Scholar
  18. 17.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, 2nd ed., Plenum, New York (1969).Google Scholar
  19. 18.
    M. F. R. Mulcahy and I. W. Smith, Rev. Pure Appl. Chem. 19, 81 (1969).Google Scholar
  20. 19.
    H. Y. Sohn and J. Szekely, Can. J. Chem. Eng. 50, 674 (1972).CrossRefGoogle Scholar
  21. 20.
    J. Shen and J. M. Smith, Ind. Eng. Chem. Fundam. 4, 293 (1965).CrossRefGoogle Scholar
  22. 21.
    W. Jander, Z. Anorg. Aug. Chem. 163, 1 (1927).CrossRefGoogle Scholar
  23. 22.
    F. Habashi, Extractive Metallurgy, Vol. 1, General Principles, Chap. 8, Gordon and Breach, New York (1969).Google Scholar
  24. 23.
    P. P. Budnikov and A. M. Ginstling, Principles of Solid State Chemistry, Reaction in Solids, K. Shaw, transi, ed., Chap. 5, McLaren and Sons, London (1968).Google Scholar
  25. 24a.
    R. E. Carter, in Ultrafine Particles, W. E. Kuhn, ed., Wiley, New York (1963), p. 491;Google Scholar
  26. 24b.
    R. E. Carter, J. Chem. Phys. 35, 1137 (1961).CrossRefGoogle Scholar
  27. 25.
    R. Aris, Ind. Eng. Chem. Fundam. 6, 316 (1967).CrossRefGoogle Scholar
  28. 26.
    G. S. G. Beveridge and P. J. Goldie, Chem. Eng. Sci. 23, 913 (1968).CrossRefGoogle Scholar
  29. 27.
    C. Y. Wen and S. C. Wang, Ind. Eng. Chem. 62(8), 30 (1970).CrossRefGoogle Scholar
  30. 28.
    D. Luss and N. R. Amundson, AIChE J. 15, 194 (1969).CrossRefGoogle Scholar
  31. 29a.
    H. Y. Sohn, AIChE J. 19, 191 (1973)CrossRefGoogle Scholar
  32. 29b.
    H. Y. Sohn, AIChE J. 20, 416 (1974).CrossRefGoogle Scholar
  33. 30.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications Inc., New York (1965).Google Scholar
  34. 31.
    J. B. Rosser, Theory and Application of \( \int_0^z {{e^{ - {x^2}}}dx{\kern 1pt} \quad and\quad \int_0^z {{e^{ - {p^2}{y^2}}}dy\,\int_0^y {{e^{ - {x^2}}}dx} } } \) Mapleton House, New York (1948).Google Scholar
  35. 32.
    E. E. Petersen, AIChE J. 3, 443 (1957).CrossRefGoogle Scholar
  36. 33.
    K. Hashimoto and P. L. Silveston, AIChE J. 19, 268 (1973).CrossRefGoogle Scholar
  37. 34.
    P. Schneider and P. Mitschka, Chem. Eng. Sci. 21, 455 (1966).CrossRefGoogle Scholar
  38. 35.
    E. W. Thiele, Ind. Eng. Chem. 31, 916 (1939).CrossRefGoogle Scholar
  39. 36.
    V. W. Weekman Jr. and R. L. Gorring, J. Catal. 4, 260 (1965).CrossRefGoogle Scholar
  40. 37.
    P. L. Walker Jr., F. Rusinko Jr., and L. G. Austin, Adv. Catal. 11, 133 (1959).CrossRefGoogle Scholar
  41. 38.
    E. E. Petersen, Chem. Eng. Sci. 17, 987 (1962).CrossRefGoogle Scholar
  42. 39.
    P. B. Weisz and J. S. Hicks, Chem. Eng. Sci. 17, 265 (1962).CrossRefGoogle Scholar
  43. 40.
    H. Y. Sohn and J. Szekely, Chem. Eng. Sci. 27, 763 (1972).CrossRefGoogle Scholar
  44. 41.
    H. Y. Sohn and J. Szekely, Chem. Eng. Sci. 28, 1169 (1973).CrossRefGoogle Scholar
  45. 42.
    J. Szekely, C. I. Lin, and H. Y. Sohn, Chem. Eng. Sci. 28, 1975 (1973).CrossRefGoogle Scholar
  46. 43.
    J. Szekely and H. Y. Sohn, Trans. Inst. Min. Met. 82, C92 (1973).Google Scholar
  47. 44.
    J. Szekely and J. W. Evans, Chem. Eng. Sci. 25, 1019 (1970).Google Scholar
  48. 45.
    J. Szekely and J. W. Evans, Chem. Eng. Sci. 26, 1901 (1971).CrossRefGoogle Scholar
  49. 46.
    R. H. Tien and E. T. Turkdogan, Met. Trans. 3, 2039 (1972).CrossRefGoogle Scholar
  50. 47.
    D. Papanastassiou and G. Bitsianes, Met. Trans. 4, 477 (1973).CrossRefGoogle Scholar
  51. 48.
    M. Ishida and C. Y. Wen, AIChE J. 14, 311 (1968).CrossRefGoogle Scholar
  52. 49a.
    K. B. Bischoff, Chem., Eng. Sci. 18, 711 (1963).CrossRefGoogle Scholar
  53. 49b.
    K. B. Bischoff, Chem., Eng. Sci. 20, 783 (1965).CrossRefGoogle Scholar
  54. 50.
    D. Luss, Can. J. Chem. Eng. 46, 154 (1968).CrossRefGoogle Scholar
  55. 51.
    H. Y. Sohn and J. Szekely, Chem. Eng. Sci. 29, 630 (1974).CrossRefGoogle Scholar
  56. 52.
    A. Calvelo and J. M. Smith, Proceedings of Chemeca 70, Paper 3.1, Butterworths, Australia (1971).Google Scholar
  57. 53.
    J. Szekely and J. W. Evans, Met. Trans. 2, 1699 (1971).CrossRefGoogle Scholar
  58. 54.
    A. K. Lahiri and V. Seshadri, J. Iron Steel Inst. London 206, 1118 (1968).Google Scholar
  59. 55.
    S. Strijbos, Chem. Eng. Sci. 28, 205 (1973).CrossRefGoogle Scholar
  60. 56.
    J. W. Evans and S. Song, Met. Trans. 4, 170 (1973).CrossRefGoogle Scholar
  61. 57.
    J. W. Evans and S. Song, I/EC Proc. Design Develop. 13, 146 (1974).CrossRefGoogle Scholar
  62. 58.
    B. G. Baldwin, J. Iron Steel Inst. (London) 179, 30 (1955).Google Scholar
  63. 59.
    K. Otsuka and D. Kunii, J. Chem. Eng. Japan 2(1), 46 (1969).CrossRefGoogle Scholar
  64. 60.
    Y. K. Rao, Met. Trans. 2, 1439 (1971).Google Scholar
  65. 61.
    M. I. El-Guindy and W. G. Davenport, Met. Trans. 1, 1729 (1970).CrossRefGoogle Scholar
  66. 62.
    Y. Maru, Y. Kuramasu, Y. Awakura, and Y. Kondo, Met. Trans. 4, 2591 (1973).CrossRefGoogle Scholar
  67. 63.
    H. Y. Sohn and J. Szekely, Chem. Eng. Sci. 28, 1789 (1973).CrossRefGoogle Scholar
  68. 64.
    L. J. Petrovic and G. Thodos, Ind. Eng. Chem. Fundam. 7, 274, (1968).CrossRefGoogle Scholar
  69. 65.
    E. J. Wilson and C. J. Geankoplis, Ind. Eng. Chem. Fundam. 5, 9 (1966).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • H. Y. Sohn
    • 1
  1. 1.Department of Metallurgy and Metallurgical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations