Linear Colliders Driven by A Superconducting Linac-Fel System

  • U. Amaldi
  • C. Pellegrini
Part of the Ettore Majorana International Science Series book series (EMISS, volume 29)

Abstract

In this paper we discuss linear colliders in the TeV energy region, based on a two beam accelerator scheme. The low energy beam is used in a Free Electron Laser to produce short wavelength radiation, in the range from one cm to a fraction of a mm. The energy lost by this beam is restored by a superconducting linac. The short wavelength radiation is fed to a high frequency, linac-type structure, where the high energy beam is accelerated. We give a review of the scaling laws for a linear collider and use them to find some possible set of parameters for our system. We then discuss some of the accelerator technical problems and the beam physics problems encountered in the design of such a system.

Keywords

Microwave Attenuation Compaction Eter Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Richter, Nuclear Instr. and Meth. 136:47 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    E. Keil et al., e+-e- colliders, in: Proc. of the second ICFA Workshop on Possibilities and Limitations of Accelerators and Detectors, U. Amaldi, ed., CERN, Geneva (1980).Google Scholar
  3. 3.
    B. Richter, in: Laser Acceleration of Particles, C. Joshi and T. Katsouleas, eds., American Institute of Physics, Conf. Proc, no. 130, p.8 (1985).Google Scholar
  4. 4.
    U. Amaldi, Nuclear Instr. and Meth. A 243: 312 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    J. Lawson, Linear collider constraints: some implications for future accelerators, CERN report 85–15 (1985).Google Scholar
  6. 6.
    C. Pellegrini, in: Proc. of the 1985 Intern. Symp. on Lepton and Photon Interactions at High Energies, Kyoto (1985).Google Scholar
  7. 7.
    A.M. Sessler, in: Laser Acceleration of Particles, American Institute of Physics, Conf. Proc. vol. 91, p.154 (1982); also A.M.Sessler, IEEE Trans. Nucl. Sci., NS-30:3145 (1983).Google Scholar
  8. 8.
    R. Hollebeek, Nuclear Instr. and Meth. 184:333 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    T.Himmel and J.Siegrist, in ref.2, p.602 (1980).Google Scholar
  10. 10.
    K.Yokoya, KEK report 85–53 (1985).Google Scholar
  11. 12.
    R. Noble, Simulation of beamstrahlung for colliding e++e- beams with negligible disruption, AAS-note 3, SLAC (1985).Google Scholar
  12. 12.
    In ref.4 the beamstrahlung parameter is defined to be \(2\sqrt 2 \) times smaller.Google Scholar
  13. 13.
    W.K.H. Panofsky, Limiting Technologies for Particle Beams and High Energy Physics, SLAC report, SLAC-Pub-3735 (1985).Google Scholar
  14. 14.
    SLC Design Handbook, Stanford Linear Accelerator Center, Stanford (1984).Google Scholar
  15. 15.
    A.M. Hutton et al., IEEE Trans. Nucl. Sci. NS-32:1659 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    M. Barton, IEEE Trans. Nucl. Sci. NS-32:3350 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    S. Krinsky, in: Free Electron Generation of Extreme Ultraviolet Coherent Radiation, J.M.J. Madey and C. Pellegrini, eds., American Institute of Physics, Conf. Proc, vol. 118, p.44 (1984).Google Scholar
  18. 18.
    C. Joshi and T. Katsouleas, eds., Laser Acceleration of Particles, American Institute of Physics, Conf. Proc, vol.130 (1985).Google Scholar
  19. 19.
    D.B. Hopkins et al., IEEE Trans. Nucl. Sci. NS-32:3476 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    R.B.Palmer et al., ref.18, p.234 (1985).Google Scholar
  21. 21.
    N.M.Kroll, ref.18, p.253 (1985).Google Scholar
  22. 22.
    See for instance: P.B.Wilson, ref.18, p.560 (1985).Google Scholar
  23. 23.
    H. Piel, IEEE Trans. Nucl. Sci. NS-32:3565 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    U. Amaldi, H. Lengeler and H. Piel, Linear colliders with superconducting cavities, CLIC Note-15, CERN/EF 86–8 (1986).Google Scholar
  25. 25.
    U. Amaldi, Phys. Letters 61B:313 (1976).ADSGoogle Scholar
  26. 26.
    M. Tigner, Nuovo Cimento 37:1228 (1956).Google Scholar
  27. 27.
    W. Schnell, Dissipation versus peak power in a classical linac, CERN report LEP-RF/WS/PS (1985).Google Scholar
  28. 28.
    W. Schnell, Consideration of a two beam twin RF scheme for powering an RF linear collider, CERN report LEP-RF/WS/PS (1985).Google Scholar
  29. 29.
    L.R. Elias et al., Nuclear Instr. and Meth. A237:203 (1985).ADSCrossRefGoogle Scholar
  30. 30.
    N.M. Kroll, P.L. Morton and M.W. Rosenbluth, IEEE J. Quantum Electronics QE-17:1436 (1981).ADSCrossRefGoogle Scholar
  31. 31.
    D.B. Hopkins, A.M. Sessler and J.S. Wurtele, Nuclear Instr. and Meth. A228:15 (1984).ADSCrossRefGoogle Scholar
  32. 32.
    E.J. Sternbach and A.M. Sessler, A steady state FEL: Particle dynamics in the FEL portion of a two beam accelerator, Lawrence Berkeley Laboratory report, LBL-19939 (1985).Google Scholar
  33. 33.
    R. Chasman and K. Green, Brookhaven National Laboratory report, BNL 50505 (1980).Google Scholar
  34. 34.
    H. Bruck, Accelerateurs Circulaire de Particules, Presse Universitaire, Paris (1966).Google Scholar
  35. 35.
    A. Piwinsky, in: Proc. 9th Intern. Conf. on High Energy Accelerators, Stanford (1974).Google Scholar
  36. 36.
    J.D. Bjorken and S.E. Mtingwa, Particle Accelerators 13:115 (1983).Google Scholar
  37. 37.
    J. Bisognano et al., Feasibility study of a storage ring for a high power XUV free electron laser, Lawrence Berkeley Laboratory, report LBL-19771 (1985).Google Scholar
  38. 38.
    M. Sands, The physics of electron storage rings. An introduction, in: Physics with Intersecting Storage Rings, B. Touschek, ed., Academic Press, New York (1971).Google Scholar
  39. 39.
    C. Pellegrini, IEEE Trans. Nucl. Sci. NS-28:2413 (1981).ADSCrossRefGoogle Scholar
  40. 40.
    R.W. Kuenning and A.M. Sessler, Nuclear Instr. and Meth. A243:263 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • U. Amaldi
    • 1
  • C. Pellegrini
    • 1
    • 2
  1. 1.CERNGenève 23Suisse
  2. 2.Brookhaven National LaboratoryUptonUSA

Personalised recommendations