Advertisement

Analytic Tools for Solving Nonlinear Problems in Particle Accelerators: A Review and an Example

  • Stefania P. Petracca
  • Innocenzo M. Pinto
Part of the Ettore Majorana International Science Series book series (EMISS, volume 29)

Summary

Motivations for using analytical tools in studying particle accelerators are suggested, available techniques are reviewed, and a computational example is presented.

Keywords

Particle Accelerator Nonlinear Evolution Equation Volterra Series Charged Bunch Homogeneous Random 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proceedings of the US-CERN School on Nonlinear Dynamics, S. Margherita di Pula (Italy), 1985.Google Scholar
  2. 2.
    CM. Tang and P. Sprangle, Space-Charge Waves in Laser Beat Wave Accelerators, Phys. Fluids (USA) 28:1974 (1985).ADSMATHCrossRefGoogle Scholar
  3. 3.
    P. Chen et al., Acceleration of Electrons by Interaction of a Bunched Electron Beam with a Plasma, Phys. Rev. Lett. 54:693 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    A.F. Pisarev, Particle Focusing and Deflection in a Ring Accelerator with Rectified Light, Sov. Phys. Tech. Phys. 24:697 (1977).Google Scholar
  5. 5.
    T. Weiland, On the Numerical Solution of Maxwell Equations and Applications in the Field of Particle Accelerators, Particle Acc. (GB) 15: 245 (1984).Google Scholar
  6. 6.
    R.M. Miura (ed.), “Bäklund Transforms”, Springer Verlag, Berlin (1976).Google Scholar
  7. 7.
    F. Calogero and A. de Gasperis, “Spectral Transforms and Solitons”, North Holland, Amsterdam (1982).Google Scholar
  8. 8.
    N.N. Bogolijubov et al., “Methods of Accelerated Convergence in Nonlinear Mechanics”, Springer-Hindustan, Dehli (1976).CrossRefGoogle Scholar
  9. 9.
    G. Franceschetti and I. Pinto, Nonlinear Propagation and Scattering: Analytic Solution and Symbolic Code Implementation, J. Opt. Soc. Am. A2:997 (1985).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M. Schetzen, “The Volterra and Wiener Theories of Nonlinear Systems”, Wiley-Interscience, New York (1980).MATHGoogle Scholar
  11. 11.
    R.H. Cameron and W.T. Martin, The Orthogonal Development of Nonlinear Functionals in Series of Fourier Hermite Functionals, Ann. Math. (USA) 48:385 (1947).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    D. Gorman and J. Zaborsky, Functional Lagrange Expansion in State Space and the s-Domain, IEEE Trans. Automatic Control AC-11:498 (1966).CrossRefGoogle Scholar
  13. 13.
    R. Bellman, Lagrange Expansion for Operators, Bull. Am. Math. Soc. 71: 496 (1965).CrossRefGoogle Scholar
  14. 14.
    H. Ogura and J. Nakayama, Initial Value Problem of the One Dimensional Wave Propagation in a Homogeneous Random Medium, Phys. Rev. A 11:957 (1975).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    H. Nakazawa, Nonlinear Stochastic Differential Equations in Statistical Physics and Integral Representation, Progr. Th. Phys (Japan) 56:1411 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    A.M. Arthur (ed.), “Functional Integration and its Applications”, Oxford Univ. Press, Oxford (1975).Google Scholar
  17. 17.
    I.M. Gel’fand and A.M. Yaglom, Integration in Functional Space and its Applications in Quantum Physics, J. Math. Phys. 1:48 (1960).ADSMATHCrossRefGoogle Scholar
  18. 18.
    A. Nayfeh, “Perturbation Techniques”, Wiley-Interscience, New York (1973).Google Scholar
  19. 19.
    A. Cuyt, “Padé Approximants for Operators”, Springer-Verlag, Berlin (1984).MATHGoogle Scholar
  20. 20.
    G. Franceschetti and I. Pinto, Padé Approximants in Functional Electromagnetics, Proc. VII Nat.1 Meeting on Applied Electromagnetics, Trieste (Italy), 1986.Google Scholar
  21. 21.
    E. Ciapala et al., The Variation of γt with Δp/p in the CERN-ISR, IEEE Trans. Nucl. Sci. NS-26:3571 (1979).CrossRefGoogle Scholar
  22. 22.
    M.H. Blewett et al. (eds.), Theoretical Aspects of the Behaviour of Beams in Accelerators and Storage Rings, CERN Rep.t 77–13 (1977).Google Scholar
  23. 23.
    U. Funk et al., Mathematical and Numerical Methods for the Nonlinear Hyperbolic Propagation Problem: A Preliminary Treatment of Collective Space Charge Effects in Accelerator Physics, Kernforschungsans-lage Jülich Rep. 1772 (1982).Google Scholar
  24. 24.
    S. Petracca and I. Pinto, Volterra Series Solution of Particle de-Bunching Equation, Lett. Nuovo Cimento 44:573 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Stefania P. Petracca
    • 1
  • Innocenzo M. Pinto
    • 2
  1. 1.Dip. di Matematica ed ApplicazioniUniversità di NapoliNapoliItalia
  2. 2.Dip. di ElettronicaUniversità di NapoliNapoliItalia

Personalised recommendations