Advertisement

RFQ Application

  • A. Schempp
Part of the Ettore Majorana International Science Series book series (EMISS, volume 29)

Abstract

The design of an RFQ accelerator can be done in two nearly independent steps. The specific electrode design determines beam properties and can be shaped to get the output beam current and emittance needed for experiments or further acceleration in other accelerator structures. The rf cavity then has to be designed to provide a uniform electrode potenttial generally as high as possible and with high efficiency in respect to power consumption. In the following paper a new specific beam dynamic design is presented, followed by examples how RFQs are designed and built. In a third part specific high frequency problems are addressed and at last the four-rod-λ/2 structure developed in Frankfurt is discussed.

Keywords

Linear Accelerator Shunt Impedance High Current Injector Single Bunch High Power Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    I.M. Kapchinskiy and V.A. Teplyakov, Prib. Tekh. Eksp., 4:19 (1970)Google Scholar
  2. 1b.
    I.M. Kapchinskiy and V.A. Teplyakov, Prib. Tekh. Eksp., 4:17 (1970).Google Scholar
  3. 2.
    K.R. Crandall, R.H. Stokes and T.P. Wangler, Brookhaven National Labotory, BNL-51143 (1980), p. 20.Google Scholar
  4. 3.
    R.W.Müller, GSI Darmstadt, GSI-Report 79–7 (1979).Google Scholar
  5. 4.
    J.Müller and A.Schempp, Univ. Frankfurt/M., IAP, Int. Report 79–1 (1979); Engl. Transi. LA-TR-82–28 (1982).Google Scholar
  6. 5.
    A. Schempp et al., Proc. 1984 Linear Accelerator Conference, Seeheim, GSI 84–11 (1984), p. 100.Google Scholar
  7. 6.
    R.H. Stokes and G.N. Minerbo, IEEE Trans. Nucl. Sci. NS-32:2593 (1985).ADSCrossRefGoogle Scholar
  8. 7.
    A. Schempp, Univ. Frankfurt/M., IAP, Int. Report 85–6 (1985); Engl. Transi. LA-TR-85–21 (1985).Google Scholar
  9. 8.
    H.O. Moser and A. Schempp, KFK Katlsruhe, KFK 4090 (1986).Google Scholar
  10. 9.
    A. Crametz et al., Nuclear Instr. and Meth. 242:179 (1986).ADSCrossRefGoogle Scholar
  11. 10.
    P. Blüm and A. Citron, Proc. 3rd EHF-Workshop, Karlsruhe 1986.Google Scholar
  12. 11.
    A. Schempp et al., IEEE Trans. Nucl. Sci. NS-32:3552 (1985).Google Scholar
  13. 12.
    DESY Hamburg, HERA-Report 84–12 (1984).Google Scholar
  14. 13.
    A. Schempp, Proc. 1984 Linear Accelerator Conference, Seeheim, GSI-84–11 (1984), p.. 339.Google Scholar
  15. 14.
    A. Schempp, Proc. 1986 Linear Accelerator Conference, Stanford, to be published.Google Scholar
  16. 15.
    Y. Hirao, Proc. 1984 Linear Accelerator Conference, Seeheim, GSI 84–11 (1984), p. 490.Google Scholar
  17. 16.
    R.W. Müller et al., Proc. 1984 Linear Accelerator Conference, Seeheim, GSI 84–11 (1984), p. 77.Google Scholar
  18. 17.
    W. Neumann et al., Proc. 1984 Linear Accelerator Conference, Seeheim, GSI 84–11 (1984), p. 80.Google Scholar
  19. 18.
    A. Schempp et al., Nuclear Instr. and Meth. 10/11:831 (1985).ADSCrossRefGoogle Scholar
  20. 19.
    A.Schempp et al., Proc. HIF Symposium, Washington 1986, to be published.Google Scholar
  21. 20.
    A. Schempp et al., IEEE Trans. Nucl. Sci. NS-30:3536 (1983).ADSCrossRefGoogle Scholar
  22. 21.
    S.O. Schriber, Proc. 1984 Linear Accelerator Conference, Seeheim, GSI 84–11 (1984), p. 501.Google Scholar
  23. 22.
    N. Zoubek et al., Proc. HIF Symposium, Washington 1986, to be published.Google Scholar
  24. 23.
    J.Klabunde et al., Proc. 1986 Linear Accelerator Conference, Stanford, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. Schempp
    • 1
  1. 1.Institut für Angenwandte Physik der UniversitätFrankfurt am MainGermany

Personalised recommendations