Effect of Gastrointestinal Conditions on the Mineral-Binding Properties of Dietary Fibers

  • Joseph A. Laszlo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 249)


Investigations into the relationship between dietary fiber content and mineral-nutrient bioavailability of diets have generally shown an inverse relationship (Munoz, 1986). The inhibitory effect of fiber on mineral absorption, although perhaps more appropriately attributed to phytic acid in some studies, thus seems well established. The process by which fiber exerts its inhibitory effect is less well characterized. Three modes of inhibition have been hypothesized (Kelsay, 1981): 1) fiber greatly increases fecal bulk and motility, thus reducing the time available for absorption or access to transport mechanisms; 2) fiber directly or indirectly alters luminal-to-serosal transport mechanisms in the mucosa (such as the ferritin system); 3) the formation of stable, unabsorbable mineral-fiber complexes reduces the pool of available minerals. The latter hypothesis, utilized by most investigators, as well as in this work, posits that minerals bound to large macromolecules can not be absorbed directly nor transfer to mineral-transporter moieties. Thus, within the context of the subject matter of these proceedings, the present work addresses the issue of “To what extent might a plant-derived macromolecular complex (i.e., plant cell walls) impede mineral absorption?”


Dietary Fiber Phytic Acid Plant Cell Wall Mineral Absorption Acidic Polysaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, F. (1962) Res. Vet. Sci. 3, 78–84.Google Scholar
  2. Anory, D. L., & Dufey, J. E. (1984) Plant Soil 80, 181–190.CrossRefGoogle Scholar
  3. Aspinall, G. Ο., Hunt, Κ., & Morrison, Ι. M. (1966) J. Chem. Soc. 1966, 1945–1949.Google Scholar
  4. Aspinall, G. Ο., Hunt, Κ., & Morrison, Ι. M. (1967) J. Chem. Soc. 1967c, 1080–1086.Google Scholar
  5. Dainty, J., & Hope, A. B. (1961) Aust. J. Biol. Sci. 14, 541–551.Google Scholar
  6. Darvill, Α., McNeil, M., Albersheim, P., & Delmer, D. P. (1980) in The Biochemistry of Plants (Tolbert, Ν. E., Ed.) Vol 1, pp 91–162, Academic Press, New York.Google Scholar
  7. Dintzis, F. R., Baker, F. L., & Calvert, C. (1989) Biol.Trace Elem. Res. 19, in press.Google Scholar
  8. Dintzis, F. R., Watson, P. R., & Sandstead, Η. H. (1985) Am. J. Clin. Nutr. 41, 901–908.Google Scholar
  9. Fernandez, R., & Phillips, S. F. (1982) Amer. J. Clin. Nutr. 35, 100–106.Google Scholar
  10. Good, N. E., Winget, G. E., Winter, W., Connolly, T. N., Izawa, S., & Singh, R. M. M. (1966) Biochemistry 5, 467–477.CrossRefGoogle Scholar
  11. Graf, E., & Dintzis, F. R. (1982) Anal. Biochem. 119, 413–417.CrossRefGoogle Scholar
  12. Jacob, R. Α., Sandstead, H. H., Klevay, L. M., & Johnson, L. K. (1980) Blood, 56, 786–791.Google Scholar
  13. James, W. P. T., Branch, W. J., & Southgate, D. A. T. (1978) Lancet 1, 638–639.CrossRefGoogle Scholar
  14. Kelsay, J. L. (1981) Cereal Chem. 58, 2–5.Google Scholar
  15. Laszlo, J. A. (1987) J. Agric. Food Chem. 35, 593–600.CrossRefGoogle Scholar
  16. Laszlo, J. A. (1988a) Cereal Chem. 65, 20–23.Google Scholar
  17. Laszlo, J. A. (1988b) in Soybean Utilization Alternatives (McCann, L., Ed.) pp 333–341, University of Minnesota Press, St. Paul.Google Scholar
  18. Lykken, G. I., Mahalko, J. R., Nielsen, E. J., & Dintzis, F. R. (1987) J. Food Sci. 52, 1545–1548.CrossRefGoogle Scholar
  19. Monnier, I., Colette, C., Aguirre, L., & Mirouze, J. (1980) Am. J. Clin. Nutr. 33, 1225–1232.Google Scholar
  20. Moore, R. J., & Kornegay, Ε. T. (1987) Nutr. Rep. Int. 36, 1237–1249.Google Scholar
  21. Munoz, J. M. (1986) in CRC Handbook of Dietary Fiber in Human Nutrition (Spiller, G. Α., Ed.) pp 193–200, CRC Press, Boca Raton.Google Scholar
  22. Ovesen, L., Bendtsen, F., Tage-Jensen, U., Pedersen, N. T., Gram, B. R., & Rune, S. J. (1986) Gastroenterology 90, 958–962.Google Scholar
  23. Platt, S. R., & Clydesdale, F. M. (1987) J. Food Sci. 52, 1414–1419.CrossRefGoogle Scholar
  24. Rasper, V. F. (1979) in Dietary Fibers: Chemistry and Nutrition (Inglett G. E., & Falkehag S. I., Eds.) pp 93–115, Academic Press, New York.Google Scholar
  25. Reinhold, J. G., Garcia L J. S., & Garzon, P. (1981) Am. J. Clin. Nutr. 34, 1384–1391.Google Scholar
  26. Schweizer, T. F., & Würsch, P. (1979) J. Sci. Food Agric. 30, 613–619.CrossRefGoogle Scholar
  27. Selvendran, R. R. (1984) Amer. J. Clin. Nutr. 39, 320–337.Google Scholar
  28. Sentenac, H., & Grignon, C. (1981) Plant Physiol. 68, 415–419.CrossRefGoogle Scholar
  29. Slatkavitz, C. Α., & Clydesdale, F. M. (1988) Am. J. Clin. Nutr. 47, 487–495.Google Scholar
  30. Spiller, G. A. (1986) in CRC Handbook of Dietary Fiber in Human Nutrition (Spiller, G. Α., Ed.) pp 15–18, CRC Press, Boca Raton.Google Scholar
  31. Tadesse, K. (1986) Brit. J. Nutr. 55, 507–513.CrossRefGoogle Scholar
  32. Thompson, S. Α., & Weber, C. W. (1979) J. Food Sci. 44, 752–754.CrossRefGoogle Scholar
  33. Trowell, H. (1974) Lancet 1, 503.CrossRefGoogle Scholar
  34. Trowell, H., Southgate, D. A. T., Wolever, T. M. S., Leeds, A. R., Gassull, Μ. Α., & Jenkins, D. J. A. (1976) Lancet 1, 967.CrossRefGoogle Scholar
  35. Van Cutsem, P., & Gillet, C. (1982) J. Exp. Bot. 33, 847–853.Google Scholar
  36. Van Cutsem, P., & Gillet, C. (1983) Plant Physiol. 73, 865–867.CrossRefGoogle Scholar
  37. Ward, A. T., & Reichert, R. D. (1986) J. Nutr. 116, 233–241.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Joseph A. Laszlo

There are no affiliations available

Personalised recommendations