Advertisement

On the Molecular Mechanism of Intestinal Calcium Transport

  • Robert H. Wasserman
  • Curtis S. Fullmer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 249)

Abstract

The calcium concentration in blood, presumably similar to the calcium concentration in ancient seas during evolution, is a relatively stable biological “constant”, averaging about 2.5 mM (10 mg/dl) in the normal individual. The maintenance of blood calcium concentrations is primarily the function of the calcium regulating hormones, namely, parathyroid hormone (PTH), calcitonin and the vitamin D hormone, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (Bronner & Coburn, 1982; Lawson, 1978). The main organ systems involved in systemic calcium homeostasis are the intestine, kidney and skeleton. Parathyroid hormone, secreted during periods of hypocalcemia, exerts three main effects: (a) increases bone resorption, (b) decreases phosphate reabsorption by renal tubules and (c) stimulates the synthesis of l,25(OH)2D3 by the renal 25(OH)D3–1-hydroxylase system. The vitamin D hormone: (a) synergizing with parathyroid hormone, increases the bone resorptive process, (b) increases the intestinal absorption of calcium, and (c) increases the reabsorption of calcium by the distal renal tubules (Figure 1). The net effect of the dual action of parathyroid hormone and 1,25(OH)2D3 is to assure that normal levels of blood Ca2+ are maintained. Phosphate absorption by the intestine is also stimulated by vitamin D and 1,25(OH)2D3 (Wasserman & Taylor, 1973; Peterlik & Wasserman, 1978). Calcitonin, on the other hand, is secreted during periods of hypercalcemia and, by inhibiting osteoclastic bone resorption, brings blood Ca2+ levels down to within the normal range (Mac Intyre, 1986).

Keywords

Calcium Absorption Brush Border Basolateral Membrane Brush Border Membrane Middle Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baimbridge, K. G., Miller, J. J. (1982) Brain Res. 245, 223–229.CrossRefGoogle Scholar
  2. Balmain, N., Brehier, A., Cuisinier-Gleizes, P. (1986) Cell Tissue Res. 245, 331–335.CrossRefGoogle Scholar
  3. Bar, A., Rosenberg, J. & Hurwitz, S. (1984) Comp. Biochem. Physiol. 78B, 75–79.Google Scholar
  4. Bikle, D. D., & Munson, S. (1985) J. Clin. Invest. 76, 2312–2316.CrossRefGoogle Scholar
  5. Brasitus, T. A., Dudeja, P. K., Eby, B., Lau, K. (1986) J. Biol. Chem. 261, 16404–16409.Google Scholar
  6. Bronner, F., & Coburn, J. W. (1982) Disorders of Mineral Metabolism. Calcium Physiology, Vol. 11, Academic Press, New York.Google Scholar
  7. Bronner, F., Pansu, D., & Stern, W. D. (1986) Am. J. Physiol. 250, G561-G569.Google Scholar
  8. Bruns, M. E., Kleeman, E., Bruns, D. E. (1986) J. Biol. Chem. 261, 7485–7490.Google Scholar
  9. Bruns, M. E., Kleeman, E., Mills, S. E., Bruns, D. E., Herr, J. C. (1985) Anat. Rec. 213, 514–517.CrossRefGoogle Scholar
  10. Campbell, A. K. (1983) Intracellular Calcium. Its Universal Role as a Regulator, John Wiley, New York.Google Scholar
  11. Chandler, J. S., & Wasserman, R. H. (1987) in Calcium-Binding Proteins in Health and Disease (Norman, A. W., Vanaman, T. C., & Means, A. R., Eds.) pp 110–112, Academic Press, New York.Google Scholar
  12. Christakos, S., Bruns, M. E., Mehra, A. S., Rhoten, W. B., Van Eldik, L. J. (1984) Arch. Biochem. Biophys. 231, 38–47.CrossRefGoogle Scholar
  13. Christakos, S., Friedlander, E. J., Frandsen, B. R., Norman, A. W. (1979) Endocrinology 104, 1495–1503.CrossRefGoogle Scholar
  14. Corradino, R. A. (1977) in Vitamin D: Biochemical, Chemical and Clinical Aspects Related to Calcium Metabolism (Norman, A. W. et al., Eds.) pp 231–240, de Gruyter, Berlin.Google Scholar
  15. Corradino, R. A., Wasserman, R. H., Pubols, M. H., & Chang, S. I. (1968) Arch. Biochem. Biophys. 125, 378–380.CrossRefGoogle Scholar
  16. Davis, W. L., & Jones, R. G. (1981) Tissue Cell 13, 381–391.CrossRefGoogle Scholar
  17. Desplan, C., Heidmann, D., Auffray, C., Lillie, J. & Thomasset, M. (1983) in Calcium-Binding Proteins (de Bernard et al., Eds.) pp 301–302, Elsevier, New York.Google Scholar
  18. Feher, J. J. (1983) Am. J. Physiol. 244, C303–C307.Google Scholar
  19. Feher, J. J., and Fullmer, C. S. (1988) in Cellular Calcium and Phosphate Transport (Bronner, F., & Peterlik, M., Eds.) pp 121–126, Alan R. Liss, New York.Google Scholar
  20. Feher, J. J., & Wasserman, R. H. (1978) Biochim. Biophys. Acta 540, 134–143.CrossRefGoogle Scholar
  21. Feher, J. J., & Wasserman, R. H. (1979a) Endocrinology 104, 547–551.CrossRefGoogle Scholar
  22. Feher, J. J., & Wasserman, R. H. (1979b) Am. J. Physiol. 236, 556–561.Google Scholar
  23. Feldman, S. C., & Christakos, S. (1983) Endocrinology 112, 290–302.CrossRefGoogle Scholar
  24. Freedman, R. A., Weiser, M. M., Isselbacher, K. J. (1977) Proc. Natl. Acad. Sci. USA 74, 3612–3616.Google Scholar
  25. Fujita, T. (1986) Miner. Electrolyte Metab. 12, 149–156.Google Scholar
  26. Fullmer, C. S. (1988) FASEB J. 2, A1632.Google Scholar
  27. Fullmer, C. S., & Wasserman, R. H. (1981) J. Biol. Chem. 256, 5669–5674.Google Scholar
  28. Fullmer, C. S., & Wasserman, R. H. (1987) Proc. Natl. Acad. Sci. USA 84, 4772–4776.CrossRefGoogle Scholar
  29. Garcia Segura, L. M., Baetens, D., Roth, J., Norman, A. W., & Orci, L. (1984) Brain Res. 296, 75–86.CrossRefGoogle Scholar
  30. Garel, J. M., Delorme, A. C., Marche, P., Nguyen, T. M., & Garabedian, M. (1981) Endocrinology 109, 284–289.CrossRefGoogle Scholar
  31. Ghijsen, W. E. J. M., DeJong, M. D., & Van Os, C. H. (1982) Biochim. Biophys. Acta 689, 327–336.CrossRefGoogle Scholar
  32. Ghijsen, W. E. J. M., & Van Os, C. H. (1982) Biochim. Biophys. Acta 689, 170–172.CrossRefGoogle Scholar
  33. Haussler, M. R. (1986) Ann. Rev. Nutrition 6, 527–562.CrossRefGoogle Scholar
  34. Hofman, T., Kawakami, M., Hitchman, A. J. W., Harrison, J. E. & Dorrington, K. H. (1979) Can. J. Biochem. 57, 737–748.CrossRefGoogle Scholar
  35. Hunziker, W. (1986) Proc. Natl. Acad. Sci. USA 83, 7578–7582.CrossRefGoogle Scholar
  36. Hildemann, B., Schmidt, A., & Murer, H. (1982) J. Membr. Biol. 65, 55–62.CrossRefGoogle Scholar
  37. Jande, S. S., & Brewer, L. M. (1974) Z. Anat. Entwicklungsgesch. 144, 249–265.CrossRefGoogle Scholar
  38. Jande, S. S., Maler, L., & Lawson, D. E. (1981) Nature 294, 765–767.CrossRefGoogle Scholar
  39. Kendrick, N. C., Bishop, C. W., & DeLuca, H. F. (1984) J. Biol. Chem. 259, 12691–12695.Google Scholar
  40. Kowarski, S., & Schachter, D. (1980) J. Biol. Chem. 255, 10834–10840.Google Scholar
  41. Kretsinger, R. H., Mann, J. E., & Simmonds, J. G. (1982) in Vitamin D: Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism (Norman, A. W. et al., Eds.) pp 233–248, de Gruyter, New York.Google Scholar
  42. Lawson, D. E. M. (1978) Vitamin D, Academic Press, New York.Google Scholar
  43. Lee, Y. S., Taylor, A. N., Reimers, T. J., Edelstein, S., Fullmer, C. S., & Wasserman, R. H. (1987) Proc. Natl. Acad. Sci. USA 84, 7344–7348.CrossRefGoogle Scholar
  44. Legrand, C., Brehier, A., Clavel, M. C., Thomasset, M., & Rabie, C. (1988) Brain Res. 466, 121–129.Google Scholar
  45. Lippiello, L., & Wasserman, R. H. (1975) J. Histochem. Cytochem. 23, 111–116.CrossRefGoogle Scholar
  46. Long, R. G., Bikle, D. D., & Munson, S. J. (1986) Endocrinology 119, 2568–2573.CrossRefGoogle Scholar
  47. Mac Intyre, I. (1986) British Med. Bulletin 42, 343–352.Google Scholar
  48. MacLaughlin, J. A., Weiser, M. M., & Freedman, R. H. (1980) Gastroenterology 78, 325–332.Google Scholar
  49. Meyer, S. A., Chandler, J. S., & Wasserman, R. H. (1984) in Endocrine Control of Bone and Celcium Metabolism (Cohn, D. V., Potts, J. T. Jr., & Fujita, T., Eds.) pp 324–326, Elsevier, Amsterdam.Google Scholar
  50. Meyer, S. A., & Wasserman, R. H. (1983) Fed. Proc. 42, 1367.Google Scholar
  51. Moriuchi, S., Yoshizawa, S., & Hosoya, N. (1977) J. Nutr. Sci. Vitaminol. 23, 497–504.CrossRefGoogle Scholar
  52. Morrissey, R. L. & Wasserman, R. H. (1971) Am. J. Physiol. 220, 1509–1515.Google Scholar
  53. Nellans, H. N., & Popovitch, J. E. (1981) J. Biol. Chem. 256, 9932–9936.Google Scholar
  54. Nemere, L, Leathers, V., & Norman, A. W. (1986) J. Biol. Chem. 261, 16106–16114.Google Scholar
  55. Nemere, I., Leathers, V. L., Jones, G. I., Luben, R. A., & Norman, A. W. (1988) J. Bone and Mineral Res. 3(suppl. 1), S153.Google Scholar
  56. Nemere, I., & Norman, A. W. (1986) Endocrinology 119, 1406–1408.CrossRefGoogle Scholar
  57. Nemere, I., & Norman, A. W. (1987) J. Bone and Mineral Res. 2, 99–107.CrossRefGoogle Scholar
  58. Nemere, I., Yoshimoto, Y., & Norman, A. W. (1984) Endocrinology 119, 2568–2573.Google Scholar
  59. Oberholtzer, J. C., Schneider, M. E., Summers, M. C., Saunders, J. C., and Matschinsky, F. M. (1986) Hear. Res. 23, 161–168.CrossRefGoogle Scholar
  60. O’Doherty, P. J. A. (1979) Lipids 14, 75–77.CrossRefGoogle Scholar
  61. Pansini, A. R., & Christakos, S. (1984) J. Biol. Chem. 259, 9735–9741.Google Scholar
  62. Pansu, D., Bellaton, C., & Bronner, F. (1983a) Am. J. Physiol. 244, G20–G26.Google Scholar
  63. Pansu, D., Bellaton, C., Roche, C., & Bronner, F. (1983b) Am. J. Physiol. 244, G695–G700.Google Scholar
  64. Pansu, D., Ballaton, C. & Roche, C. (1988) in Cellular Calcium and Phosphate Transport in Health and Disease (Bronner, F. & Peterlik, M., Eds.) pp 115–120, Alan R. Liss, New York.Google Scholar
  65. Pasteeis, B., Parmentier, M., Lawson, D. E. M., Verstappen, A., & Pochet, R. (1987) Invest. Ophthalmol. Vis. Sci. 28, 658–664.Google Scholar
  66. Pasteeis, J. L., Pochet, R., Surardt, L., Hubeau, C., Chirnoaga, M., Parmentier, M., & Lawson, D. E. (1986) Brain Res. 384, 294–303.CrossRefGoogle Scholar
  67. Peterlik, M., & Wasserman, R. H. (1978) Am. J. Physiol. 234, E379–E388.Google Scholar
  68. Rabie, A., Thomasset, M., & Legrand, C. (1983) Cell Tissue Res. 232, 691–696.CrossRefGoogle Scholar
  69. Roche, C., Bellaton, C., Pansu, D., Miller, A. 3d., & Bronner, F. (1986) Am. J. Physiol. 251, G314–G320.Google Scholar
  70. Roth, J., Baetens, D., Norman, A. W., & Garcia Segura, L. M. (1981) Brain Res. 222, 452–457.CrossRefGoogle Scholar
  71. Rubinoff, M. J., & Nellans, H. N. (1985) J. Biol. Chem. 260, 7824–7828.Google Scholar
  72. Schachter, D., & Rosen, S. M. (1959) Am. J. Physiol. 196, 357–362.Google Scholar
  73. Shimura, F., & Wasserman, R. H. (1984) Endocrinology 115, 1964–1972.CrossRefGoogle Scholar
  74. Steeves, R. M., & Lawson, D. E. (1985) Biochim. Biophys. Acta 841, 292–298.CrossRefGoogle Scholar
  75. Szebenyi, D. M. E., & Moffat, K. (1986) J. Biol. Chem. 261, 8761–8777.Google Scholar
  76. Szebenyi, D. M. E., Obendorf, S. K., & Moffat, K. (1981) Nature (London) 294, 327–332.CrossRefGoogle Scholar
  77. Taylor, A. N. (1977) J. Nutr. 107, 480–486.Google Scholar
  78. Taylor, A. N., & Wasserman, R. H. (1972) Am. J. Physiol. 223, 110–114.Google Scholar
  79. Thomasset, M., Desplan, C., & Parkes, O. (1983) Eur. J. Biochem. 129, 519–524.CrossRefGoogle Scholar
  80. Thomasset, M., Molla, A., Parkes, O., & Demaille, J. G. (1981) FEBS. Lett. 127, 13–16.CrossRefGoogle Scholar
  81. Thomasset, M., Rabie, A., Parkes, O., Desplan, C., Henin, D., & Cuisinier Gleizes, P. (1984) Dev. Pharmacol. Ther. 7, 6–10.Google Scholar
  82. Toverud, S. U., & Dostal, L. A. (1986) J. Pediatr. Gastroenterol. Nutr. 5, 688–695.CrossRefGoogle Scholar
  83. Van Corven, E. J. J. M., DeJong, M. D., & Van Os, C. H. (1986) Cell Calcium 7, 89–99.CrossRefGoogle Scholar
  84. Verstappen, A., Parmentier, M., Chirnoaga, M., & Lawson, D. E. (1986) Opthalmic. Res. 18, 209–214.CrossRefGoogle Scholar
  85. Vesely, D. L., & Juan, D. (1984) Am. J. Physiol. 246, E115–E120.Google Scholar
  86. Walters, J. R. F. (1987) in Calcium-Binding Proteins in Health and Disease (Norman, A. W., Vanaman, T. C., & Means, A. R., Eds.) pp 122–124, Academic Press, New York.Google Scholar
  87. Walters, J. R. F., & Weiser, M. M. (1987) Am. J. Physiol. 252, G170–G177.Google Scholar
  88. Warembourg, M., Perret, C., & Thomasset, M. (1986) Endocrinology 119, 176–184.CrossRefGoogle Scholar
  89. Warner, R. R., & Coleman, J. R. (1975) J. Cell Biol. 64, 54–74.CrossRefGoogle Scholar
  90. Wasserman, R. H. (1980) in Pediatric Diseases Related to Calcium (DeLuca, H. F., & Anast, C. S., Eds.) pp 107–132, Elsevier, New York.Google Scholar
  91. Wasserman, R. H., Brindak, M. E., Meyer, S. A., & Fullmer, C. S. (1982) Proc. Natl. Acad. Sci. USA 79, 7939–7943.CrossRefGoogle Scholar
  92. Wasserman, R. H., & Chandler, J. S. (1985) in Bone and Mineral Research/3 (Peck, W. A., Ed.) pp 181–211, Elsevier, Amsterdam.Google Scholar
  93. Wasserman, R. H., Corradino, R. A., Feher, J. J., & Armbrecht, H. J. (1977) in Vitamin D: Biochemical, Chemical and Clinical Aspects Related to Calcium Metabolism (Norman, A. W., Schaefer, K., Coburn, J. W., De Luca, H. F., Fraser, D., Grigoleit, H. G., & Herrath, D. v., Eds.) pp 331–340, de Gruyter, Berlin.Google Scholar
  94. Wasserman, R. H., & Fullmer, C. S. (1982) in Calcium and Cell Function (Cheung, W. Y., Ed.) Vol. 11, pp 175–216, Academic Press, N.Y.Google Scholar
  95. Wasserman, R. H., Fullmer, C. S. & Shimura, F. (1984) in Vitamin D: Basic and Clinical Aspects (Kumar, R., Ed.) pp 233–257, Martinus Nijhoff, Boston.Google Scholar
  96. Wasserman, R. H., & Kallfelz, F. A. (1962) Am. J. Physiol. 203, 221–224.Google Scholar
  97. Wasserman, R. H., Kallfelz, F. A. & Comar, C. L. (1961) Science 133, 883–884.CrossRefGoogle Scholar
  98. Wasserman, R. H. & Taylor, A. N. (1969) in Mineral Metabolism, An Advanced Treatise (Comar, C. L., & Bronner, F., Eds.) pp 321–403, Academic Press, New York.Google Scholar
  99. Wasserman, R. H., & Taylor, A. N. (1973) J. Nutrition 103, 586–599.Google Scholar
  100. Wilson, P. W., Harding, M. & Lawson, D. E. M. (1985) Nucleic Acids Res. 13, 8867–8881.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Robert H. Wasserman
  • Curtis S. Fullmer

There are no affiliations available

Personalised recommendations