The Learning of Algorithmic Concepts by Action a Study with Deaf Children

  • E. Cohors-Fresenborg
  • H. J. Struber


In considering the role of language in the acquisition of mathematical concepts and for the understanding of mathematics in general, the special case of deaf-mute people solving mathematical problems is crucial. The importance of language in learning mathematics is at least twofold: as a carrier of information of what is meant in the mathematical question posed, and as an inner medium to organize thought about the mathematical problem. Both functions of language will permeate the constructions of a conceptual system representing the mathematical knowledge of an individual person.


Mathematical Problem Mathematical Knowledge Normal Child Deaf Child Mathematical Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bronckart J.P., 1978, Les conditions de base de l’acquisition du langage, Revue de phonétique appliquée.Google Scholar
  2. Cohors-Fresenborg, E., 1978, Learning problem solving by developing automata networks, Revue de phonétique appliquée 46/47.Google Scholar
  3. Cohors-Fresenborg E., 1979, Machines as medium for verification, in: Proceedings of the 3rd International Conference for the Psychology of Mathematic Education, University of Warwick, Coventry.Google Scholar
  4. Cohors-Fresenborg E., Fincke D., 1979a, Dynamical Mazes, Osnabrücker Schriften zur Mathematik, Reihe U, H. 11–19, Osnabrück.Google Scholar
  5. Cohors-Fresenborg E., Finke D., 1979b, Automaten und Algorithmen (Lehrerbegleitheft) Osnabrücker Schriften zur Mathematik, Reihe U Heft 21, Osnabrück.Google Scholar
  6. Cohors-Fresenborg E., Goldberg A., Strüber H.J., 1980, Pilotstudie über algorithmische Begriffsbildung bei gehörlosen Grundschülern, Osnabrücker Schriften zur Mathematik, Reihe D Band 2, Osnabrück.Google Scholar
  7. Davis R., McKnight C., 1979, Modeling the Process of Mathematical Thinking, The Journal of Children’s Mathematical Behavior.Google Scholar
  8. Furth, H.G., 1971, Linguistic deficiency and thinking: Research with deaf subjects 1964–1969, Psychological Bulletin 76. Google Scholar
  9. Furth H.G., Youniss J., 1971, Formal operations and language, A comparison of deaf and hearing adolescents, Intern. J. of Psychol. 6Google Scholar
  10. Goetzinger C.P., Wills R.C., 1967, Non-language I.Q. tests used with deaf pupils, Volta Review 69.Google Scholar
  11. Hunt E., 1974, Quote the Raven? Nevermore, in Knowledge and cognition, Gregg L.W. ed., New York.Google Scholar
  12. Krutetskii V.A., 1976, The psychology of Mathematical Abilities in Schoolchildren.Google Scholar
  13. Miller G.A., Galanter E., Pribram K.H., 1960, Plans and the Structure of Behavior, New York.CrossRefGoogle Scholar
  14. Oléron P., 1971, Langage et pensée quelques évidences, Inter. J. of Psychol. 6.Google Scholar
  15. Papert S., 1973, Uses of technology to enhance education, LOGO-Memo 8. IGoogle Scholar
  16. Schwank I., 1979, Limits and Possibilities of the Method of Thinking-Aloud in: “Proceedings of the 3rd International Conference for the Psychology of Mathematics Education”, Coventry.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • E. Cohors-Fresenborg
    • 1
  • H. J. Struber
    • 1
  1. 1.University of OsnabrückOsnabrückWest Germany

Personalised recommendations