On the Conformation, Coacervation and Function of Polymeric Models of Elastin

  • Dan W. Urry
  • Marianna M. Long
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 79)


In a recent review (1) entitled “Conformations of the Repeat Peptides of Elastin in Solution: An Application of Proton and Carbon-13 Magnetic Resonance to the Determination of Polypeptide Secondary Structure”, the secondary structures of the monomers and polymers of the repeat peptides of tropoelastin were described. The repeat peptides, as reported by Foster et al. (2) and Gray et al. (3) but with the permutation given in terms of the conformational unit, are Val1-Pro2-Gly3-Gly4, Val1-Pro2-Gly3-Val4-Gly5, and Ala1-Pro2-Gly3-Val4-Gly5-Val6. Derivatives of these monomers, their permutations, oligomers and high polymers were studied in four different solvents dimethylsulfoxide, methanol, trifluoroethanol and water. More recently each of the three monomers have been studied in chloroform and their possible conformations examined by means of extensive conformational energy calculations (4–6). In each solvent and in the conformational energy calculations, all of the repeat peptides were found to contain the β-turn with Pro2 and Gly3 at the corners as a dominant conformational feature (see Figure 1). This β-turn utilizes a hydrogen bond between the C-O of residue 1 and the N-H of residue 4.


Polymeric Model Rubber Elasticity Secondary Structural Feature Elastomeric Property Repeat Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Urry, D.W. and Long, M.M. (1976) CRC Crit. Rev. Bio-chem. 4, 1–45.CrossRefGoogle Scholar
  2. 2.
    Foster, J.A., Bruenger, E., Gray, W.R. and Sandberg, L.B. (1973) J. Biol. Chem. 248, 2876–2879.PubMedGoogle Scholar
  3. 3.
    Gray, W.R., Sandberg, L.B. and Foster, J.A. (1973) Nature 246, 461–466.PubMedCrossRefGoogle Scholar
  4. 4.
    Khaled, Md. A., Renugopalakrishnan, V. and Urry, D.W. (1976) J. Amer. Chem. Soc. (in press).Google Scholar
  5. 5.
    Renugopalakrishnan, V., Khaled, Md.A. and Urry, D.W. (submitted for publication).Google Scholar
  6. 6.
    Urry, D.W., Khaled, Md.A. and Renugopalakrishnan, V. (in preparation).Google Scholar
  7. 7.
    Khaled, Md.A., Urry, D.W. and Okamoto, K. (1976) Biochem. Biophys. Res. Commun. (in press).Google Scholar
  8. 8.
    Urry, D.W., Mitchell, L.W., Ohnishi, T. and Long, M.M. (1975) J. Mol. Biol. 96, 101–117.PubMedCrossRefGoogle Scholar
  9. 9.
    Urry, D.W., Ohnishi, T., Long, M.M. and Mitchell, L.W. (1975) Int. J. Pept. Protein Res. 7, 367–378.PubMedCrossRefGoogle Scholar
  10. 10.
    Urry, D.W., Mitchell, L.W. and Ohnishi, T. (1975) Biochim. Biophys. Acta 393, 296–306.PubMedCrossRefGoogle Scholar
  11. 11.
    Sandberg, L.B., Weissman, N. and Smith, D.W. (1969) Biochemistry 8, 2940–2945.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith, D.W., Weissman, N. and Carnes, W.H. (1968) Biochem. Biophys. Res. Commun. 31, 309–315.PubMedCrossRefGoogle Scholar
  13. 13.
    Partridge, S.M., Davis, H.F. and Adair, G.S. (1955) Biochem. J. 61, 11–21.PubMedGoogle Scholar
  14. 14.
    Partridge, S.M. and Davis, H.F. (1955) Biochem. J. 61, 21–30.PubMedGoogle Scholar
  15. 15.
    Urry, D.W., Long, M.M. and Mitchell, L.W. (1976) Int. J. Quantum Chem.: Quantum Biology Symp. No. 3 (in press).Google Scholar
  16. 16.
    Partridge, S.M. (1967) Biochim. Biophys. Acta 140, 132–141.CrossRefGoogle Scholar
  17. 17.
    Cox, B.A., Starcher, B.C. and Urry, D.W. (1973) Biochim. Biophys. Acta 317, 209–213.PubMedCrossRefGoogle Scholar
  18. 18.
    Cox, B.A., Starcher, B.C. and Urry, D.W. (1974) J. Biol. Chem. 249, 997–998.PubMedGoogle Scholar
  19. 19.
    Urry, D.W., Long, M.M., Cox, B.A., Ohnishi, T., Mitchell, L.W. and Jacobs, M. (1974) Biochim. Biophys. Acta 371, 597–602.PubMedCrossRefGoogle Scholar
  20. 20.
    Volpin, D., Urry, D.W., Cox, B.A. and Gotte, L. (1976) Biochim. Biophys. Acta 439, 253–258.PubMedCrossRefGoogle Scholar
  21. 21.
    Volpin, D., Urry, D.W., Pasquali-Ronchetti, I. and Gotte, L. (1976) Micron (in press).Google Scholar
  22. 22.
    Gotte, L., Giro, M.G., Volpin, D. and Home, R.W. (1974) J. Ultrastructure Res. 46, 23–33.CrossRefGoogle Scholar
  23. 23.
    Gotte, L., Volpin, D., Home, R.W. and Mammi, M. (1976) Micron (in press).Google Scholar
  24. 24.
    Serafini-Fracassini, A., Field, J.M., Spina, M., Stephens, W.G.S. and Delf, B. (1976) J. Mol. Biol. 100, 73–84.PubMedCrossRefGoogle Scholar
  25. 25.
    Urry, D.W. (1976) Faraday Disc. Chem. Soc, No. 61 (in press).Google Scholar
  26. 26.
    Urry, D.W. and Mitchell, L.W. (1976) Biochem. Biophys. Res. Commun. 68, 1153–1160.PubMedCrossRefGoogle Scholar
  27. 27.
    Keller, S., Mandl, I., Birken, S. and Canfield, R. (1976) Biochem. Biophys. Res. Commum. 70, 174–179.Google Scholar
  28. 28.
    Torchia, D.A. and Piez, K.A. (1973) J. Mol. Biol. 76, 419–424.PubMedCrossRefGoogle Scholar
  29. 29.
    Urry, D.W. (1974) Adv. Exp. Med. Biol. 43, 211–243.Google Scholar
  30. 30.
    Dustan, H. (private communication).Google Scholar
  31. 31.
    Urry, D.W., Okamoto, K., Harris, R.D., Hendrix, C.F. and Long, M.M. (1976) Biochemistry (in press).Google Scholar
  32. 32.
    Okamoto, K. and Urry, D.W. (1976) Biopolymers (in press).Google Scholar
  33. 33.
    Weis-Fogh, T., and Andersen, S.O. (1970) Nature 227, 718–721.PubMedCrossRefGoogle Scholar
  34. 34.
    Deam, R.T. and Edwards, S.F. (1976) Phil. Trans. Roy. Soc. (London) 280, 317–353.CrossRefGoogle Scholar
  35. 35.
    Hoeve, C.A.J. and Flory, P.J. (1974) Biopolymers 13, 677–686.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Dan W. Urry
    • 1
  • Marianna M. Long
    • 1
  1. 1.Laboratory of Molecular Biophysics and the Cardiovascular Research andTraining CenterUniversity of Alabama Medical CenterBirmingham, AlabamaUK

Personalised recommendations