The Molecular Conformation of Elastin as Derived from Mechanical Investigations

  • N. G. McCrum
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 79)


Since Hoeve and Flory (1,2) corrected the earlier work of Meyer and Ferri and Wölisch et al. it has been deduced by all later workers (apart from Weis-Fogh and Anderson) (3) that the mechanism of mechanical deformation in elastin is essentially entropy elastic. [If the force f is written f = fe + fs (the sum of the energy and entropy components fe and fs) then this implies fe/f << 1.] The purpose of this paper is to examine critically the methods used in making this deduction. This will lead to a discussion of the reliability of mechanical experiments in understanding the nature of the molecular conformation of elastin in vivo.


Mechanical Experiment Molecular Conformation Rubber Elasticity Extension Ratio Entropy Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoeve, C.A.J. and Flory, P.J., J. Amer Chem. Soc. 80 6523 (1958).CrossRefGoogle Scholar
  2. 2.
    Hoeve, C.A.J. and Flory, P.J., J. Polym. Sci. 60 155 (1962).CrossRefGoogle Scholar
  3. 3.
    Wels-Fogh, J. and Anderson, S.O., Nature 227 718 (1970).CrossRefGoogle Scholar
  4. 4.
    Dorrington, K., Grut, W. and McCrum, N.G., Nature 225 476 (1975).CrossRefGoogle Scholar
  5. 5.
    Mistrali, F., Volpin, D., Garibaldo, G.B. and Ciferri, A., J. Phys. Chem. 75 142 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    Hoeve, C.A.J. and Flory, P.J., Biopolymers 13 677 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    Oplatka, A., Michaeli, I. and Katchalsky, A., J. Polym. Sci. 46 365 (1960).CrossRefGoogle Scholar
  8. 8.
    Sullivan, J.L. and Smith, K.J., J. Polymer Sci., Polymer Physics, 13 857 (1975).CrossRefGoogle Scholar
  9. 9.
    Ellis, G.E. and Packer K.J., Biopolymers 15 813 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    Dorrington, K. and McCrum, N.G., submitted to Biopolymers.Google Scholar
  11. 11.
    Partridge, S.M. in “The Physiology and Biochemistry of Muscle as a Food” (edit. by Briskey, E.F., Cassens, R.C. and Trautman, F.C.), 327, (Univ. Wisconsin Press, Madison 1966).Google Scholar
  12. 12.
    Grut, W. and McCrum, N.G., Nature 251 165 (1974).CrossRefGoogle Scholar
  13. 13.
    Snoek, J.L. in New Developments in Ferromagnetic Materials, Elsevier Publ. Co., Amsterdam, (1947).Google Scholar
  14. 14.
    Fast, J.D., in “Entropy”, Macmillan, London (1970).Google Scholar
  15. 15.
    Gotte, L., Mammi, M. and Pezzin, G., in Symposium on Fibrous Proteins, (edit. by Crewther, W.G.,) 236 (Butterworth, Australia).Google Scholar
  16. 16.
    Torchia, D.A. and Piez, K.A., J. Mol. Biol 76 419 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    Lyerla, J.R. and Torchia, D.A., Biochemistry 14 5175 (1975).PubMedCrossRefGoogle Scholar
  18. 18.
    Flory, P.J., International Union of Pure and Applied Chemistry, Macromolecular Chemistry 8 1 (1973).Google Scholar
  19. 19.
    Cox, B.A., Starcher, B.C. and Urry, D.W., Biochim. et Biophysica Acta 317 209 (1973).CrossRefGoogle Scholar
  20. 20.
    Cox, B.A., Starcher, B.C., and Urry, D.W., J. of Biol. Chem. 249 997 (1974).Google Scholar
  21. 21.
    Gray, W.R., Sandberg, L.B., and Foster, J.A., Nature 246 461 (1973).PubMedCrossRefGoogle Scholar
  22. 22.
    Urry, D.W., Mitchell, L.W., and Ohnishi, T., Biochem. and Biophys. Res. Comm. 59 62 (1974).CrossRefGoogle Scholar
  23. 23.
    Urry, D.W. and Ohnishi, T., Biopolymers 13 1223 (1974).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • N. G. McCrum
    • 1
  1. 1.Department of Engineering ScienceOxford UniversityUK

Personalised recommendations