The Elasticity in the Presence of Diluents

  • C. A. J. Hoeve
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 79)


A review is given of the thermoelastic measurements performed on different materials. Basically, all materials can be divided into two groups. For crystalline and glassy materials the enthalpy component of the retractive force is large and the entropy component is small. On the other hand, for amorphous, crosslinked polymers the opposite is true. After corrections are made for volume changes, the energy component is generally small and the entropy component is large. Only rubber-like polymers, whether diluted or not, are known to display the latter behavior. Moreover, these materials generally undergo glass transitions upon cooling. In these physical properites elastin behaves like the latter class. Therefore in the absence of evidence to the contrary, elastin must be considered to be an amorphous, crosslinked polymer displaying rubberlike elasticity.


Natural Rubber Rotational State Amorphous Polymer Glassy Material Rubber Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maximow, A.A. and Bloom, W., A textbook of Histology, W.B. Saunders Company, Philadelphia, p. 70 (1952).Google Scholar
  2. 2.
    Partridge, S.M., The Physiology and Biochemistry of Muscle as Food, E. J. Briskey, R. G. Cassens and J. C. Trautman, University of Wisconsin Press, Madison, p.327 (1966).Google Scholar
  3. 3.
    Partridge, S.M., The Chemistry and Molecular Biology of the Intercellular Matrix, E. A. Balasz, Academic Press, London, 1 671 (1970).Google Scholar
  4. 4.
    Ramachandran, G.N. and Kartha, G., Nature, 174 269 (1954).PubMedCrossRefGoogle Scholar
  5. 5.
    Rich, A. and Crick, F.H.C., J. Mol. Biol., 3 483 (1961).PubMedCrossRefGoogle Scholar
  6. 6.
    Astbury, W.T., J. Intern. Soc. Leather Trades’ Chem., 24 69 (1940).Google Scholar
  7. 7.
    Meyer, K.H. and Ferri, C., Pflüger’s Arch. ges. Physiol., 238 78 (1939).CrossRefGoogle Scholar
  8. 8.
    Wöhlisch, E., Weitnauer, H., Grüing, W. and Rohrbach, R., Kolloid Z., 104 14 (1943).CrossRefGoogle Scholar
  9. 9.
    Hoeve, C.A.J. and Flory, P.J., J. Am. Chem. Soc., 80 6523 (1958).CrossRefGoogle Scholar
  10. 10.
    Weis-Fogh, T. and Andersen, S.O., Nature 227 718 (1970).PubMedCrossRefGoogle Scholar
  11. 11.
    Gray, W.R., Sandberg, L.B. and Foster, J.A., Nature, 246 461 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    Hoeve, C.A.J. and Flory, P.J., Biopolymers, 13 677 (1974).PubMedCrossRefGoogle Scholar
  13. 13.
    Grut, W. and McCrum, N.G., Nature, 251 165 (1974).CrossRefGoogle Scholar
  14. 14.
    Dorrington, K., Grut, W. and McCrum, N.G., Nature, 255 476 (1975).CrossRefGoogle Scholar
  15. 15.
    Kakivaya, S.R. and Hoeve, C.A.J., Proc. Nat. Acad. Sci. USA, 72 3505 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    Wiegand, W.B. and Snyder, J.W., Trans. Inst. Rubber Ind., 10 234 (1934).Google Scholar
  17. 17.
    Flory, P.J., Ciferri, A. and Hoeve, C.A.J., J. Polymer Sci., 45 235 (1960).CrossRefGoogle Scholar
  18. 18.
    Kuhn, W., Kolloid Z., 76 258 (1936).CrossRefGoogle Scholar
  19. 19.
    Flory, P.J., Statistical Mechanics of Chain Molecules, Interscience, New York, (1969).Google Scholar
  20. 20.
    Molyneux, P., Water, A Comprehensive Treatise, ed. F. Franks, 4 569 (1974).Google Scholar
  21. 21.
    Unpublished Results.Google Scholar
  22. 22.
    Malcom, G.N., and Rowlinson, J.S., Trans. Farad. Soc., 53 921 (1957).CrossRefGoogle Scholar
  23. 23.
    Refojo, M.F. and Yasuda, H., J. Appl. Polymer Sci., 9 2425 (1965).CrossRefGoogle Scholar
  24. 24.
    Mackenzie, A.P. and Rasmussen, R.H., Water Structure at the Water-Polymer Interface, ed. H.H.G. Jellinek, Plenum Press, New York, p. 146 (1972).CrossRefGoogle Scholar
  25. 25.
    Kauzmann, W., Advan. Protein Chem., 14 1 (1959).CrossRefGoogle Scholar
  26. 26.
    Kuntz, I.D., and Kauzmann, W., Adv. Prot. Chem., 28 239 (1974).CrossRefGoogle Scholar
  27. 27.
    Hoeve, C.A.J. and Lue, P.C., Biopolymers, 13 1661 (1974).PubMedCrossRefGoogle Scholar
  28. 28.
    Hoeve, C.A.J. and Kakivaya, S.R., J. Phys. Chem., 80 745 (1976).CrossRefGoogle Scholar
  29. 29.
    Hoeve, C.A.J. and Flory, P.J., J. Polymer Sci., 60 155 (1962).CrossRefGoogle Scholar
  30. 30.
    Kobacs, A.J., Fortschritte Hochpolym. Forschung, 3 394 (1963).Google Scholar
  31. 31.
    Wunderlich, B., Bodily, D.M. and Kaplan, M.H., J. Applied Phys., 35 95 (1964).CrossRefGoogle Scholar
  32. 32.
    Mistrali, F., Volpin, D., Garibaldo, G.B. and Ciferri, A., J. Phys. Chem., 75 142 (1971).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • C. A. J. Hoeve
    • 1
  1. 1.Department of ChemistryTexas A & M UniversityCollege StationUSA

Personalised recommendations