Advertisement

Studies on Lysyl Oxidase of Bovine Ligamentum Nuchae and Bovine Aorta

  • Robert E. Jordan
  • Paul Milbury
  • Kathleen A. Sullivan
  • Philip C. Trackman
  • Herbert M. Kagan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 79)

Abstract

Lysyl oxidase had been purified to near homogeneity from bovine aorta and bovine ligamentum nuchae employing a modification of methods described by Harris et al., and Stassen and his colleagues. The aortic enzyme gives rise to at least three peaks and the ligament enzyme resolves into at least four peaks upon chromatography on DEAE cellulose. The molecular weight of each peak of both enzymes is approximately 30,000 daltons in sodium dodecyl sulfate. The aortic enzyme aggregates to species with molecular weights varying from approximately 60,000 to 1,000,000 daltons upon dialysis out of urea into phosphate-buffered saline. Temperature studies reveal that lysyl oxidase is stable to temperatures as high as 80°C, although the assay optimum is 52°C. Studies in progress suggest the temperature dependency of assay may reflect conformational changes in the elastin substrate.

Keywords

Potassium Phosphate DEAE Cellulose Lysyl Oxidase Tritium Release Bovine Aorta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pinnell, S.R. and Martin, G.R. (1968) Proc. Nat. Acad. Sci. U.S. 61, 708.CrossRefGoogle Scholar
  2. 2.
    Franzblau, C. in “Comprehensive Biochemistry”, Florkin, M. and Stotz, E.H., eds., Vol. 26C, Elsevier, Amsterdam, 1971, p. 659.Google Scholar
  3. 3.
    Gallop, P.M., Blumenfeld, O.O. and Seifter, S. (1972) Ann. Rev. Biochem. 41, 617.PubMedCrossRefGoogle Scholar
  4. 4.
    Siegel, R.D., Pinnell, S.R. and Martin, G.R. (1970) Biochemistry9, 4486.PubMedCrossRefGoogle Scholar
  5. 5.
    Stassen, F.L.H. (1976) Biochim. Biophys. Acta438, 49.PubMedCrossRefGoogle Scholar
  6. 6.
    Kagan, H.M., Hewitt, N.A., Salcedo, L.L. and Franzblau, C. (1974) Biochim. Biophys. Acta365, 223.PubMedCrossRefGoogle Scholar
  7. 7.
    Harris, E.D., Gonnerman, W.A., Savage, J.E. and O’Dell, B.L. (1973) Biochim. Biophys. Acta341, 332.Google Scholar
  8. 8.
    Vidal, G.P., Shieh, J.J. and Yasunobu, K.T. (1975) Biochem. Biophys. Res. Commun. 64, 989.PubMedCrossRefGoogle Scholar
  9. 9.
    Cuatrecasas, P. in “Biochemical Aspects of Reactions on Solid Supports”, Stark, G.R., ed., 1971, Academic Press, N.Y., p. 79.Google Scholar
  10. 10.
    Weber, K. and Osborne, M. (1969) J. Biol.Chem. 244, 4406.PubMedGoogle Scholar
  11. 11.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol.Chem. 193, 265.PubMedGoogle Scholar
  12. 12.
    Siegel, R.C. (1974) Proc. Nat. Acad. Sci. U.S. 71, 4826.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Robert E. Jordan
    • 1
  • Paul Milbury
    • 1
  • Kathleen A. Sullivan
    • 1
  • Philip C. Trackman
    • 1
  • Herbert M. Kagan
    • 1
  1. 1.Department of BiochemistryBoston University School of MedicineBostonUSA

Personalised recommendations