Factors Affecting the Proteolytic Degradation of Elastin

  • H. M. Kagan
  • R. E. Jordan
  • R. M. Lerch
  • D. P. Mukherjee
  • P. Stone
  • C. Franzblau
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 79)


Studies in our laboratory have been concerned with aspects of the interaction of elastin with pancreatic elastase in efforts to assess intrinsic and extrinsic factors which might be involved in the regulation of elastolysis in vivo. Previous studies by others have clearly shown that elastase-elastin interactions are principally governed by ionic forces distributed between the cationic enzyme and the presumably anionic substrate. Our studies have now shown that most of the dicarboxylic amino acids in elastin are amidated, rendering elastin a cationic protein containing very few negatively charged side chains. Further, we have demonstrated that elastin can be rendered highly anionic by complex formation with amphiphilic agents such as fatty acids, bile salts, and detergents. These complexes are much more susceptible to elastolysis than elastin, itself. Evidence has also been obtained that these agents induce conformational changes in insoluble elastin, reflected in losses in elasticity of elastic fibers. Additional studies have shown that the formation of sedimentable elastin-elastase complexes seem not only to be unrelated, but, possibly, counterproductive to peptide bond scission in elastin. Further, both elastolysis and enzyme binding relationships are markedly influenced by calcium ions and by amphiphilic elastin ligands.


Proteolytic Degradation Sodium Oleate Anionic Charge Elastin Fiber Pancreatic Elastase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hayes, J.A., Korthy, A. and Snider, G.L. (1975) J. Path. 117. 1–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Loeven, W.A. (1969) J. Atheroscler. Res. 9, 35.PubMedCrossRefGoogle Scholar
  3. 3.
    Adams, C.W.M. and Tuquan, N.A. (1961) J. Pathol. Bacteriol. 82, 131.PubMedCrossRefGoogle Scholar
  4. 4.
    Geokas, M.D. (1968) Arch. Path. 86, 135–141.Google Scholar
  5. 5.
    Hall, D.A. and Czerkawski, J.W. (1961) Biochem. J. 80, 128.PubMedGoogle Scholar
  6. 6.
    Hall, D.A. and Czerkawski, J.W. (1961) Biochem. J. 80, 134.PubMedGoogle Scholar
  7. 7.
    Gertler, A. (1971) Eur. J. Biochem. 23, 36–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Partridge, S.M., Davis, H.F. and Adair, G.S. (1955) Biochem. J. 61, 11–21.PubMedGoogle Scholar
  9. 9.
    Jordan, R., Hewitt, N., Lewis, W., Kagan, H. and Franzblau, C. (1974) Biochemistry 13, 3497.PubMedCrossRefGoogle Scholar
  10. 10.
    Kagan, H.M. and Lerch, R.M. (1976) Biochim. Biophys. Acta 34, 223–232.Google Scholar
  11. 11.
    Wilcox, P.E. (1972) Methods in Enzymology 25, 596–615.CrossRefGoogle Scholar
  12. 12.
    Lansing, A.I., Rosenthal, T.B., Alex, M. and Dempsey, E.W. (1952) Anat. Rec. 114, 555–576.PubMedCrossRefGoogle Scholar
  13. 13.
    Fiatmark, T. (1966) Acta Chem. Scand. 20, 1476–1486.CrossRefGoogle Scholar
  14. 14.
    Kagan, H.M., Crombie, G.D., Jordan, R.E., Lewis, W. and Franzblau, C. (1972) Biochemistry 11, 3412–3418.PubMedCrossRefGoogle Scholar
  15. 15.
    Mukherjee, D.P., Kagan, H.M., Jordan, R.E. and Franzblau, C. (1976) Conn. Tiss. Res. 4, 177–179.CrossRefGoogle Scholar
  16. 16.
    Kagan, H.M. and Jordan, R.E. Manuscript submitted, 1976.Google Scholar
  17. 17.
    Werb, Z. and Gordon, S. (1975) J. Exp. Med. 142, 361–377.PubMedCrossRefGoogle Scholar
  18. 18.
    Janoff, A. and Scherer, J. (1968) J. Exp. Med. 128, 1137–1151.PubMedCrossRefGoogle Scholar
  19. 19.
    Feinstein, G. and Janoff, A. (1975) Biochim. Biophys. Acta 403 493–505.PubMedCrossRefGoogle Scholar
  20. 20.
    Claire, M., Jacotot, B. and Robert, L. (1976) Atherosclerosis, in press.Google Scholar
  21. 21.
    Gertler, A. (1971b) Eur. J. Biochem. 29, 541–546.CrossRefGoogle Scholar
  22. 22.
    Robert, B. and Robert, L., in “Chemistry and Molecular Biology of the Intercellular Matrix”, Balazs, E.A. (ed.), Academic Press, 1970, p. 665.Google Scholar
  23. 23.
    Gertler, A. and Birk, Y. (1965) Biochem. J. 95, 621.PubMedGoogle Scholar
  24. 24.
    Watson, H.C., Shotton, D.M., Cox, J.M. and Muirhead, H. (1970) Nature 225, 806–811.PubMedCrossRefGoogle Scholar
  25. 25.
    Stone, P.J., Perieira, V., Biles, D., Snider, G.L., Kagan, H.M. and Franzblau, C. (1976) International Meeting on Elastin, Experimental Medicine, In press.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • H. M. Kagan
    • 1
  • R. E. Jordan
    • 1
  • R. M. Lerch
    • 1
  • D. P. Mukherjee
    • 1
  • P. Stone
    • 1
  • C. Franzblau
    • 1
  1. 1.Department of BiochemistryBoston University School of MedicineBostonUSA

Personalised recommendations