Photolysis of Desmosine And Isodesmosine by Ultraviolet Light

  • F. Lamy
  • R. Bauraln
  • M. Guay
  • J. F. Larochelle
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 79)


It is known that the pyridinium ring of a model compound such as N-methyl pyridinium chloride is cleaved by U.V. radiation at 254 nm. At acid pH the products obtained are methylamine and glutaconaldehyde. Under the same conditions desmosine and isodesmosine are degraded into lysine and probably into the homologous substituted ketone of glutaconaldehyde. At pH 6.0–7.0, a transient open-chain aminoaldehyde intermediate is observed which can either reform the original compound or be cleaved as at low pH. When intact elastin is photolysed for 20 minutes in water, approximately 75% of the (iso) desmosines are destroyed, accompanied by an increase of free lysine residues. No change in the concentration of the other amino acids, including tyrosine, are noted. It is therefore likely that the crosslinks engaged in peptide links are also cleaved photochemically.


Peptide Bond Amino Acid Analysis Pyridinium Ring Order Rate Constant Soluble Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adair, G.S., Davis, H.F. and Partridge, S.M. (1951), Nature 167, 605.PubMedCrossRefGoogle Scholar
  2. 2.
    Kornfeld-Poullain, N., and Robert, L. (1968), Bull. Soc. Chim. Biol. 50, 759–771.PubMedGoogle Scholar
  3. 3.
    Balo, J. and Banga, I. (1969), Nature 164, 491.CrossRefGoogle Scholar
  4. 4.
    Narayanan, A.S. and Anwar, R.A. (1969), Biochem. J. 114, 11–17.PubMedGoogle Scholar
  5. 5.
    Partridge, S.M. and Davis, H.F. (1955), Biochem. J. 61, 21–30.PubMedGoogle Scholar
  6. 6.
    Kornfeld-Poullain, N., Rebeyrotte and Turrin, M. (1970), Bull. Soc. Chim. Biol. 52, 3–16.Google Scholar
  7. 7.
    Partridge, S.M., Elsden, D.F. and Thomas, J. (1963), Nature 197, 1297–1298.PubMedCrossRefGoogle Scholar
  8. 8.
    Thomas, J., Elsden, D.F. and Partridge, S.M. (1963), Nature 200, 651–652.PubMedCrossRefGoogle Scholar
  9. 9.
    Franzblau, C., Sinex, F.M., Faris, B. and Lampidis, (1965), Biochem. Biophys. Res. Comm. 21, 575–581.PubMedCrossRefGoogle Scholar
  10. 10.
    Weisman, N., Shields, G.S. and Carnes, W.H. (1963), J. Biol. Chem. 238, 3115–3118.Google Scholar
  11. 11.
    Sandberg, L.B., Weisman, N. and Smith, D.W. (1969), Biochemistry 8, 2940–2945.PubMedCrossRefGoogle Scholar
  12. 12.
    Shimada, W., Bowman, A., Davis, N.R. and Anwar, R.A. (1969), Biochem. Biophys. Res. Comm. 37, 191–197.PubMedCrossRefGoogle Scholar
  13. 13.
    Baurain, R., Larochelle, J.F. and Lamy, F. (1976), Eur. J. Biochem., in press.Google Scholar
  14. 14.
    Kaplan, L., Paulik, J.W. and Wilzbach, K.E. (1972), J. Am. Chem. Soc. 94, 3283–3284.CrossRefGoogle Scholar
  15. 15.
    Joussot-Dubien, J. and Houpard-Pereyre, J. (1969), Bull. Soc. Chim. de France 8, 2619–2623.Google Scholar
  16. 16.
    Foster, J.A., Rubin, L., Kagan, H.M., Franzblau, C., Bruenger, E. and Sandberg, L.B. (1974), J. Biol. Chem. 249, 6191–6196.PubMedGoogle Scholar
  17. 17.
    Lansing, A.I., Rosenthal, T.B., Alex, M. and Dempsey, E.W. (1952) Anat. Record 114, 555–575.CrossRefGoogle Scholar
  18. 18.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  19. 19.
    Rosen, H. (1957) Arch. Biochem. Biophys. 67, 10–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Paz, M.A., Pereyra, B., Gallop, P.M. and Seater, S. (1976), J. Mechanochem. Cell. Motility 2, 231–239.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • F. Lamy
    • 1
  • R. Bauraln
    • 1
  • M. Guay
    • 1
  • J. F. Larochelle
    • 1
  1. 1.Departement de Biochimie, Faculte de MedecineUniversite de SherbrookeSherbrookeCanada

Personalised recommendations