Chymotrypsinogen D, A New Zymogen from Porcine Pancreas with Proelastolytic Activity

  • F. Lamy
  • D. Gibson
  • M. Ledoux
  • J. C. Moreux
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 79)


During the purification of propancreatopeptidase E, a proATEEase activity is always copurified. The pro-elastolytlc and proesterolytic activities can be separated on a hydroxylapatite column. The zymogen with potential ATEEase activity has a basic isoelectric point, can be activated by trypsin, and can hydrolyse elastin and ATEE but not ATAME. Its molecular weight is about 26,500 and the NH2-terminal sequence indicates clearly that it belongs to the chymotrypsinogen family, but that it is not chymotrypsinogen A, B, or C. We call it chymotrypsinogen D. Although both pancreatopeptidase E and chymotrypsin D can hydrolyse elastin, the synthetic substrate ATAME is attacked only by pancreatopeptidase E. Therefore, the peptide bonds in elastin cleaved by these two enzymes should be different.


Porcine Pancreas Performic Acid Partial Specific Volume Elastolytic Activity Esterolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balo, J. and Banga, I. (1949) Nature 164, 491.PubMedCrossRefGoogle Scholar
  2. 2.
    Narayanan, A.S. and Anwar, R.A. (1969) Biochem. J. 114, 11–17.PubMedGoogle Scholar
  3. 3.
    Hall, D.A. (1957) Arch. Biochem. Biophys. 67, 366–367.PubMedCrossRefGoogle Scholar
  4. 4.
    Loeven, W.A. (1963) Acta. Physiol. Parmacoc. Neerl. 12, 57–76.Google Scholar
  5. 5.
    Banga, I. and Balo, J. (1956) Nature 178, 310–311.PubMedCrossRefGoogle Scholar
  6. 6.
    Ardelt, W. (1976) B1och1m. Biophys. Acta 341, 318.CrossRefGoogle Scholar
  7. 7.
    Ardelt, W. (1975) Blochlm. Biophys. Acta 393, 267–273.CrossRefGoogle Scholar
  8. 8.
    De Haen, C. and Gertler, A. (1975) Biochemistry 13, 2673–2677.CrossRefGoogle Scholar
  9. 9.
    Naughton, M.A. and Sanger, S. (1961) Biochem. J. 78, 156.PubMedGoogle Scholar
  10. 10.
    Lamy, F., Craig, C.P. and Tauber, S. (1961) J. B1ol. Chem. 236, 86–91.Google Scholar
  11. 11.
    Lamy, F. and Tauber, S. (1963) J. B1ol. Chem. 238, 939–966.Google Scholar
  12. 12.
    Uram, M. and Lamy, F. (1969) Blochlm. Biophys. Acta 196, 102–111.CrossRefGoogle Scholar
  13. 13.
    Ledoux, M. and Lamy, F. (1975) Can. J. Biochem. 53, 421–432.PubMedCrossRefGoogle Scholar
  14. 14.
    Moreux, J.C. and Lamy, F. (1974) Proc. CFBS 17, 613.Google Scholar
  15. 15.
    Shotton, D.M. and Hartley, B.S. (1970) Nature 225, 802–806.PubMedCrossRefGoogle Scholar
  16. 16.
    Gertler, A. and Hofmann, T. (1970) Can. J. Biochem. 68, 384–386.Google Scholar
  17. 17.
    Dayhoff, M.O. (1972) Nat. Biochem. Research Foundation 5, 107.Google Scholar
  18. 18.
    Gertler, A. and Birk, Y. (1970) Eur. J. Biochem. 12, 170–176.PubMedCrossRefGoogle Scholar
  19. 19.
    Kagan, H.M. and Lerch, R.M. (1976) Blochlm. Biophys. Acta 46 223–232.CrossRefGoogle Scholar
  20. 20.
    Gibson, D. (1974) Biochemistry 13, 2776–2785.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • F. Lamy
    • 1
  • D. Gibson
    • 1
  • M. Ledoux
    • 1
  • J. C. Moreux
    • 1
  1. 1.Departement de Biochimie, Faculte de MedecineUniversite de SherbrookeSherbrookeCanada

Personalised recommendations