Advertisement

Biomembranes pp 167-233 | Cite as

Surface Alterations in Cells Infected by Avian Leukosis-Sarcoma Viruses

  • Reinhard Kurth
Part of the Biomembranes book series (B, volume 8)

Abstract

The regulatory mechanisms involved in morphogenesis and in the subsequent maintenance of the differentiated state are poorly understood. However, it is clear that ontogenesis requires that cell proliferation and differentiation be strictly controlled to ensure appropriate development of the organism. If we accept hypothetically that it is primarily the spatial orientation of cells during ontogenesis that induces their respective differentiation (Crick, 1970; Wolpert, 1971), then the specific signals mediating spatial orientation must first be recognized by the receptors of the cell’s membrane in order to interpret and transfer the information to the nucleus for selective gene activation. This information mediating growth control and differentiation may consist, for example, of diffusible morphogenetic substances (Crick, 1970, 1971; Babloyantz and Hiernaux, 1974) or of phase transitions of at least two different signals (Goodwin and Cohen, 1969; Wolpert, 1969). In an already differentiated organ or lower organism, maintenance of differ-entiation and growth control may furthermore be mediated by specific surface receptors (surface recognition molecules, SRM)4 that distinguish between histologically identical and different cells (Moscona, 1961, 1973; Humphreys, 1963; De Long, 1970; Gierer et al., 1972; Kuhns et al., 1973).

Keywords

Wheat Germ Agglutinin Rous Sarcoma Virus Chicken Embryo Fibroblast Cell Surface Membrane Avian Leukosis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelev, G. I., 1963, Study on the antigenic structure of tumors, Acta Unio Inst. Contra Cancrum 19:80.Google Scholar
  2. Albersheim, P., and Anderson, A. J., 1971, Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens, Proc. Natl. Acad. Sci. U.S.A. 68:1815.PubMedCrossRefGoogle Scholar
  3. Alexander, P., 1972, Foetal “antigens” in cancer, Nature (London) 235:137.CrossRefGoogle Scholar
  4. Ambrose, E. J., Dudgeon, J. A., Casty, D. M., and Easty, G., 1961, The inhibition of tumour growth by enzymes in tissue culture, Exp. Cell Res. 24:220.PubMedCrossRefGoogle Scholar
  5. Ambrose, K. R., Anderson, N. G., and Coggin, J. H., 1971, Interruption of SV40-oncogenesis by human foetal tissue, Nature (London) 233:194.CrossRefGoogle Scholar
  6. Arndt-Jovin, D. J., and Berg, P., 1971, Quantitative binding of 125I-concanavalin A to normal and transformed cells, J. Virol. 8:716.PubMedGoogle Scholar
  7. Astrup, T., 1966, Tissue activators of plasminogen, Fed. Proc. 25:42.PubMedGoogle Scholar
  8. Attardi, D. G., Schlesinger, M. J., and Schlesinger, S., 1967, Submaxillary gland of mouse: Properties of a purified protein affecting muscle tissue in vitro. Science 156:1253.PubMedCrossRefGoogle Scholar
  9. Aub, J. C., Tieslau, C., and Lankester, A., 1963, Reactions of normal and tumor cell surfaces to enzymes. I. Wheatgerm lipase and associated mucopolysaccharides, Proc. Natl. Acad. Sci. U.S.A. 50:613.PubMedCrossRefGoogle Scholar
  10. Aub, J. C., Sandford, H. B., and Cote, M. N., 1965, Studies on reactivity of tumor and normal cells to a wheat germ agglutinin, Proc. Natl. Acad. Sci. U.S.A. 54:396.PubMedCrossRefGoogle Scholar
  11. Babloyantz, A., and Hiernaux, H., 1974, Models for positional information and positional differentiation, Proc. Natl. Acad. Sci. U.S.A. 71:1530.PubMedCrossRefGoogle Scholar
  12. Baldwin, R. W., Glaves, D., and Vose, B. M., 1972, Embryonic antigen expression in chemically induced rat hepatomas and sarcomas, Int. J. Cancer 10:233.PubMedCrossRefGoogle Scholar
  13. Baltimore, D., 1971, Expression of animal virus genomes, Bacteriol. Rev. 35:325.Google Scholar
  14. Barnett, R. E., Furcht, L. T., and Scott, R. E., 1974, Differences in membrane fluidity and structure in contact-inhibited and transformed cells, Proc. Natl. Acad. Sci. U.S.A. 71:1992.PubMedCrossRefGoogle Scholar
  15. Bauer, H., 1974, Virion and tumor cell antigens of C-type RNA tumor viruses, Advan. Cancer Res. 20:275.CrossRefGoogle Scholar
  16. Bauer, H., Bubenik, J., Graf, T., and Allgaier, C., 1969, Induction of transplantation resistance to Rous sarcoma isograft by avian leukosis virus, Virology 39:482.PubMedCrossRefGoogle Scholar
  17. Bauer, H., Kurth, R., Rohrschneider, L., Pauli, G., Friis, R. R., and Gelderblom, H., 1974, On the role of cell surface changes in RNA-tumor virus transformed cells, Cold Spring Harbor Symp. Quant. Biol. 39:1181.CrossRefGoogle Scholar
  18. Benjamin, T. L., and Burger, M. M., 1970, Absence of a cell membrane alteration function in non-transforming mutants of polyoma virus, Proc. Natl. Acad. Sci. U.S.A. 67:929.PubMedCrossRefGoogle Scholar
  19. Bernhard, W., 1960, The detection and study of tumor viruses with the electron microscope, Cancer Res. 20:712.PubMedGoogle Scholar
  20. Beug, H., Katz, F. E., Stein, A., and Gerisch, G., 1973, Quantitation of membrane sites in aggregating Dictyostelium cells by use of tritiated univalent antibody, Proc. Natl. Acad. Sci., U.S.A. 70:3150.PubMedCrossRefGoogle Scholar
  21. Biggs, P. M., Milne, B. S., Graf, T., and Bauer, H., 1973, Oncogenicity of non-transforming mutants of avian sarcoma viruses, J. Gen. Virol. 18:399.PubMedCrossRefGoogle Scholar
  22. Biquard, J. M., 1973, Agglutinability of Rous cells by concanavalin A: Study with a temperature sensitive RSV mutant and inhibitors or macromolecular synthesis, Intervirology 1:220.PubMedCrossRefGoogle Scholar
  23. Biquard, J. M., and Vigier, P., 1972a, Agglutination par la concanavaline A des fibroblastes d’embryon de poules transformés par le virus de Rous (SR-RSV) et un mutant thermosensible de ce virus. C.R. Acad. Sci. 274:144.Google Scholar
  24. Biquard, J. M., and Vigier, P., 1912b, Characteristics of a conditional mutant of Rous sarcoma virus defective in ability to transform cells at high temperature, Virology 47:444.CrossRefGoogle Scholar
  25. Bird, G. W. G., 1959, Br. Med. J. 15:165.Google Scholar
  26. Bolognesi, D. P., 1974, Structural components of RNA tumor viruses, Advan. Virus Res. 19:315.CrossRefGoogle Scholar
  27. Bolognesi, D. P., Bauer, H., Gelderblom, H., and Hüper, G., 1972, Polypeptides of avian RNA tumor viruses. IV. Components of the viral envelope, Virology 47:551.PubMedCrossRefGoogle Scholar
  28. Bolognesi, D. P., Ishizaki, R., Hüper, G., Vanaman, T. C., and Smith, R. E., 1975, Immunological properties of avian oncornavirus polypeptides, Virology 64:349.PubMedCrossRefGoogle Scholar
  29. Boone, C. W., Irving, D. N., and Rubinstein, S., 1971, Quantitative studies on the binding of antibody to the surface of HeLa cells, J. Immunol. 106:879.PubMedGoogle Scholar
  30. Boone, C. W., Gordin, F., and Kawakami, T. G., 1973, Surface antigens on cat leukemic cells induced by feline leukemia virus: Area density and antibody-binding affinity, J. Virol. 11:515.PubMedGoogle Scholar
  31. Bosmann, H. B., 1971, Platelet adhesiveness and aggregation: The collagen: glycosyl, polypeptide: N-acetylgalactosaminyl and glycoprotein:galactosyl-transferases of human platelets, Biochem. Biophys. Res. Commun. 43:1118.PubMedCrossRefGoogle Scholar
  32. Bosmann, H. B., 1972, Elevated glycosidases and proteolytic enzymes in cells transformed by RNA tumor virus, Biochim. Biophys. Acta 264:339.PubMedCrossRefGoogle Scholar
  33. Bosmann, H. B., 1974, Release of specific protease during mitotic cycle of L5178Y murine leukemic cells of sublethal autolysis, Nature (London) 249 :144.CrossRefGoogle Scholar
  34. Bosmann, H. B., Hagopian, A., and Eylar, E. H., 1968, Membrane glycoprotein biosynthesis: Changes in levels of glycosyl transferases in fibroblasts transformed by oncogenic viruses, J. Cell. Physiol. 72:81.PubMedCrossRefGoogle Scholar
  35. Bosmann, H. B., Bieber, G. F., Brown, A. E., Case, K. R., Gersten, D. M., Kimmerer, T. W., and Lione, A., 1973, Biochemical parameters correlated with tumour cell implantation, Nature (London) 246:487.CrossRefGoogle Scholar
  36. Bosmann, H. B., Case, K. R., and Morgan, H. R., 1974a, Surface biochemical changes accompanying primary infection with Rous sarcoma virus. I. Electrokinetic properties of cells and cell surface glycoprotein:glycosyltransferase activities, Exp. Cell Res. 83:15.PubMedCrossRefGoogle Scholar
  37. Bosmann, H. B., Lockwood, T., and Morgan, H. R., 1974b, Surface biochemical Changes accompanying primary infection with Rous sarcoma virus. II. Proteolytic and glycosidase activity and sublethal autolysis, Exp. Cell Res. 83:25.PubMedCrossRefGoogle Scholar
  38. Boyd, W. C., 1969, Lectins, Ann. N.Y. Acad. Sci. 169:168.CrossRefGoogle Scholar
  39. Boyse, E. A., Old, L. J., and Stocken, E., 1966, The TL (thymus leukemia) antigens: A review, 4th Immunopathol. Int. Symp., pp. 23–40.Google Scholar
  40. Brawn, J., 1970, Possible association of embryonal antigen(s) with several primary 3-methylcholanthrene-induced murine sarcomas, Int. J. Cancer 6:245.PubMedCrossRefGoogle Scholar
  41. Bubenik, J., and Bauer, H., 1967, Antigenic characteristics of the interaction between Rous sarcoma virus and mammalian cells: Complement-fixing and transplantation antigens, Virology 31:489.PubMedCrossRefGoogle Scholar
  42. Bubenik, J., Koldovsky, P., Svoboda, J., Klement, V., and Dvorak, R., 1967, Induction of tumors in mice with three variants of Rous sarcoma virus and studies on the immunobiology of these tumors, Folia Biol. (Praha) 13:29.Google Scholar
  43. Buck, C.A., Glick, M. C., and Warren, L., 1970, A comparative study of glycoprotein from the surface of control and Rous sarcoma virus transformed hamster cells, Biochemistry 9:4567.PubMedCrossRefGoogle Scholar
  44. Buck, C. A., Glick, M. C., and Warren, L., 1971, Glycopeptides from the surface of control and virus transformed cells, Science 172:169.PubMedCrossRefGoogle Scholar
  45. Burger, M. M., 1969, A difference in the architecture of the surface membrane of normal and virally transformed cells, Proc. Natl. Acad. Sci. U.S.A. 62:994.PubMedCrossRefGoogle Scholar
  46. Burger, M. M., 1970, Proteolytic enzymes initiating cell division and escape from contact inhibition of growth, Nature (London) 227:170.CrossRefGoogle Scholar
  47. Burger, M. M., 1973, Surface changes in transformed cells detected by lectins, Fed. Proc. 32:91.PubMedGoogle Scholar
  48. Burger, M. M., and Martin, G. S., 1972, Agglutination of cells transformed by Rous sarcoma virus by wheat germ agglutinin and concanavalin A, Native (London) New Biol. 237:9.Google Scholar
  49. Burger, M. M., and Noonan, K. D., 1970, Restoration of normal growth by covering of agglutinin sites on tumour cells surfaces, Nature (London) 228:512.CrossRefGoogle Scholar
  50. Burmester, B. R., Purchase, H. G., and Okazaki, W., 1972, Long-term experience with the herpes virus of turkeys (HVT) as a vaccine against Marek’s disease, Prog. Immunobiol. Stand. 5:132.Google Scholar
  51. Bussell, R. H., and Robinson, W. S., 1973, Membrane proteins of uninfected and Rous sarcoma virus-transformed avian cells, J. Virol. 12:320.PubMedGoogle Scholar
  52. Chen, J. H., and Hanafusa, H., 1974, Detection of a protein of avian leukoviruses in uninfected chick cells by radioimmunoassay, J. Virol. 13:340.PubMedGoogle Scholar
  53. Chou, I. N., Black, P. H., and Roblin, R. O., 1974a, Suppression of fibrinolysin T activity fails to restore density-dependent growth inhibition to SV3T3 cells, Nature (London) 250:739.CrossRefGoogle Scholar
  54. Chou, I. N., Black, P. H., and Roblin, R. O., 1974b, Non-selective inhibition of transformed cell growth by a protease inhibitor, Proc. Natl. Acad. Sci. U.S.A. 71:1748.PubMedCrossRefGoogle Scholar
  55. Clarkson, B., and Baserga, R. (ed.). 1973, Control of proliferation in animal cells, in: Cold Spring Harbor Conference on Cell Proliferation, Vol. 1, Cold Spring Harbor, N.Y.Google Scholar
  56. Cline, J. H., and Livingston, D. C., 1971, Binding of 3H-concanavalin A by normal and transformed cells, Nature (London) New Biol. 232:155.Google Scholar
  57. Coggin, J. H., Ambrose, K. R., and Anderson, N. G., 1971, Immunization against human and fetal antigens, in: Embryonic and Fetal Antigens in Cancer, Vol. 1 (N. G. Anderson and J. H. Coggin, eds.), pp. 185–198, U.S. Department of Commerce, Springfield, Va.Google Scholar
  58. Collards, J. G., and Smets, L. A., 1974, Effect of proteolytic inhibitors on growth and surface architecture of normal and transformed cells. Exp. Cell Res. 86:75.CrossRefGoogle Scholar
  59. Collins, J. J., and Black, P. H., 1974, The SV40 “S” antigen and other papovavirus-induced surface antigens, Curr. Top. Microbiol. Immunol. 63:153.PubMedGoogle Scholar
  60. Cook, G. M. W., 1968, Chemistry of membranes, Br. Med. Bull. 24:118.PubMedGoogle Scholar
  61. Couldwell, C. B., Henkart, P., and Humphreys, T., 1973, Physical properties of sponge aggregation factor: A unique proteoglycan complex, Biochemistry 12:3051.CrossRefGoogle Scholar
  62. Crick, F.H.C., 1970, Diffusion in embryogenesis, Nature (London) 225:420.CrossRefGoogle Scholar
  63. Crick, F. H. C., 1971, The scale of pattern formation, Symp. Soc. Exp. Biol. 25:429.PubMedGoogle Scholar
  64. Cumar, F. A., Brady, R. O., Kolodny, E. H., McFarland, V. M., and Mora, P. T., 1970, Enzymatic block in the synthesis of gangliosides in DNA virus-transformed tumorigenic mouse cell lines, Proc. Natl. Acad. Sci. U.S.A. 67:757.PubMedCrossRefGoogle Scholar
  65. Cunningham, B. A., Wang, J. L., Pflumm, M. N., and Edelman, G. M., 1972, Isolation and proteolytic cleavage of the intact subunit of concanavalin A, Biochemistry 2:3233.CrossRefGoogle Scholar
  66. Darcel, C. le Q., 1973, Tumor viruses of the fowl, with special reference to avian leukosis, including Marek’s disease, Canada Department of Agriculture, Ottawa, Monograph No. 8.Google Scholar
  67. De Long, J. R., 1970, Histogenesis of fetal mouse isocortex and hippocampus in reaggregating cell cultures, Dev. Biol. 22:563.CrossRefGoogle Scholar
  68. Den, H., Schultz, A. M., Basan, M., and Roseman, S., 1971, Glycoslytransferase activities in normal and polyoma-transformed BHK cells, J. Biol. Chem. 246:2721.PubMedGoogle Scholar
  69. dePetris, S., Raff, M. C., and Mallucci, L., 1973, Ligand-induced redistribution of concanavalin A receptors on normal, trypsinised and transformed fibroblasts, Nature (London) New Biol. 244:275.CrossRefGoogle Scholar
  70. De Pierre, J. W., and Karnovsky, M. L., 1973, Plasma membranes of mammalian cells: A review of methods for their characterization and isolation, J. Cell Biol. 56:275.CrossRefGoogle Scholar
  71. Dougherty, R. M., and Di Stefano, H. S., 1966, Lack of relationship between infection with avian leukosis virus and the presence of COFAL antigens in chick embryos, Virology 29:586.PubMedCrossRefGoogle Scholar
  72. Dougherty, R. M., Marucci, A. A., and Di Stefano, H. S., 1972, Application of immunohistochemistry to study of avian leukosis virus, J. Gen. Virol. 15:149.PubMedCrossRefGoogle Scholar
  73. Duff, R. G., and Vogt, P. K., 1969, Characteristics of two new avian tumor virus subgroups, Virology 39:18.PubMedCrossRefGoogle Scholar
  74. Dulbecco, R., 1973, Cell transformation by viruses and the role of viruses in cancer, J. Gen. Microbiol. 79:7.PubMedCrossRefGoogle Scholar
  75. Essex, M., Klein, G., Snyder, S. P., and Harrold, J. B., 1971, Antibody to feline oncornavirus-associated cell membrane antigen in neonatal cats, Int. J. Cancer 8:384.PubMedGoogle Scholar
  76. Essex, M., Klein, G., Deinhardt, F., Wolfe, L. G., Hardy, W. D., Theilen, G. H., and Pearson, L. D., 1972, Induction of the feline oncornavirus associated cell membrane antigen in human cells, Nature (London) New Biol. 238:187.CrossRefGoogle Scholar
  77. Fan, H., and Baltimore, D., 1973, RNA metabolism of murine leukemia virus: Detection of virus-specific RNA sequences in infected and uninfected cells and identification of virus-specific messenger RNA, J. Mol. Biol. 80:93.PubMedCrossRefGoogle Scholar
  78. Fink, M. A., and Rauscher, F. J., 1961, A simple method for the preparation of potent chicken anti-Rous sarcoma virus serum, J. Natl. Cancer Inst. 26:519.PubMedGoogle Scholar
  79. Fischer, A., 1925, Beitrag zur Biologie der Gewebezellen, Arch. Mikros. Anat. Entwicklungsmech. 104:210.CrossRefGoogle Scholar
  80. Fishman, P. H., McFarland, V. W., Mora, P. T., and Brady, R., 1972, Ganglioside biosynthesis in mouse cells: Glycosyltransferase activities in normal and virally-transformed lines, Biochem. Biophys. Res. Commun. 48:48.PubMedCrossRefGoogle Scholar
  81. Foulds, L., 1954, The experimental study of tumor progression: A review, Cancer Res. 14:327.PubMedGoogle Scholar
  82. Fox, T. O., Sheppard, J., and Burger, M. M., 1971, Cyclic membrane changes in animal cells: Transformed cells permanently display a surface architecture detected in normal cells only during mitosis, Proc. Natl. Acad. Sci. U.S.A. 68:244.PubMedCrossRefGoogle Scholar
  83. Fujita, D. J., Chen, Y. C., Friis, R. R., and Vogt, P. K., 1974, RNA tumor viruses of pheasants: Characterization of avian leukosis subgroups F and G, Virology 60:558.PubMedCrossRefGoogle Scholar
  84. Gaffney, B. J., Branton, P. E., Wickus, G. G., and Hirschberg, C. B., 1974, Fluid lipid regions in normal and Rous sarcoma virus transformed chicken embryo fibroblasts, in: Viral Transformation and Endogenous Viruses (A. Kaplan, ed.), Academic Press, New York.Google Scholar
  85. Gahmberg, C. G., and Hakomori, S. I., 1973, Altered growth behavior of malignant cells associated with changes in externally labeled glycoprotein and glycolipid, Proc. Natl. Acad. Sci. U.SA. 70:3329.CrossRefGoogle Scholar
  86. Gahmberg, C. G., Kiehn, D., and Hakomori, S. I., 1974, Changes in surface-labeled galactoprotein and in glycolipid concentrations in cells transformed by a temperature-sensitive polyoma virus mutant, Nature (London) 248:413.CrossRefGoogle Scholar
  87. Gelderblom, H., and Bauer, H., 1973, Common avian oncornavirus-induced tumor antigens in different species as revealed by immunoferritin techniques, Int. J. Cancer 11:466.PubMedCrossRefGoogle Scholar
  88. Gelderblom, H., Bauer, H., Bolognesi, D. P., and Frank, H., 1972a, Morphogenese und Aufbau von RNS-Tumorviren: Elektronenoptische Untersuchungen an Virus Partikeln vom C-Typ, Zbl. Bakteriol. Hyg. I. Abt. Orig. A 220:79.Google Scholar
  89. Gelderblom, H., Bauer, H., and Graf, T., 19726, Cell surface antigens induced by avian RNA tumor viruses: Detection by immunoferritin techniques, Virology 47:416.Google Scholar
  90. Gerisch, G., Geug, H., Malchow, D., Schwarz, H., and Stein, A., 1974, Receptors for intercellular signals in aggregating cells of the slime mold, Dictyostelium discoideum, in: Biology and Chemistry of Eue ary otic Cell Surfaces (E. G. C. Lee and E. E. Smith, eds.), pp. 49–66, Academic Press, New York.Google Scholar
  91. Gierer, A., Berking, S., Bode, H., David, C. N., Flick, K., Hansmann, G., Schaller, H., and Trenkner, E., 1972, Regeneration of hydra from reaggregated cells, Nature (London) New Biol. 239:98.CrossRefGoogle Scholar
  92. Girardi, A. J., Reppucci, P., Dierlam, P., Rutala, W., and Coggin, J. H., 1973, Prevention of SV40 tumors by hamster fetal tissue: Influence of parity status of donor females in immunogenicity of fetal tissue and on immune cell cytotoxicity, Proc. Natl. Acad. Sci. U.S.A. 70:183.PubMedCrossRefGoogle Scholar
  93. Goetz, I. E., Weinstein, C., and Roberts, E., 1972, Effects of protease inhibitors on growth of hamster tumor cells, Cancer Res. 32:2469.PubMedGoogle Scholar
  94. Gold, P., 1971, Embryonic origin of human tumor specific antigens, Prog. Exp. Tumor Res. 14:43.Google Scholar
  95. Gold, P., and Freedman, S. O., 1965, Specific carcinoembryonic antigens of the human digestive system, J. Exp. Med. 122:467.PubMedCrossRefGoogle Scholar
  96. Goldberg, A. R., 1974, Increased protease levels in transformed cells: A casein overlay assay for the detection of plasminogen activator production, Cell 2:95.PubMedCrossRefGoogle Scholar
  97. Goodwin, B. C., and Cohen, M. H., 1969, A phase-shift model for the spatial and temporal organization of developing systems, J. Theor. Biol. 25:49.PubMedCrossRefGoogle Scholar
  98. Gottlieb, D. I., Merrell, R., and Glaser, L., 1974, Temporal changes in embryonal cell surface recognition, Proc. Natl. Acad. Sci. U.S.A. 71:1800.PubMedCrossRefGoogle Scholar
  99. Grady, L. F., and Campbell, W. P., 1973, Non-repetitive DNA transcription in mouse cells grown in tissue culture, Nature (London) New Biol. 243:195.Google Scholar
  100. Graf, T., and Friis, R. R., 1973, Differential expression of transformation in rat and chicken cells infected with an avian sarcoma virus ts mutant, Virology 56:369.PubMedCrossRefGoogle Scholar
  101. Graf, T., Bauer, H., Gelderblom, H., and Bolognesi, D. P., 1971, Studies on the reproductive and cell-converting abilities of avian sarcoma viruses, Virology 43:427.PubMedCrossRefGoogle Scholar
  102. Greene, L. A., Shooter, E. M., and Varon, S., 1968, Enzymic activities of mouse nerve growth factor and its subunits, Proc. Natl. Acad. Sci. U.S.A. 60:1383.PubMedCrossRefGoogle Scholar
  103. Gregg, J. H., 1956, Serological investigations of cell adhesion in the slime moulds, Dictyostelium discoideum, Dictyostelium purpureum and Polyphondylium violaceum, J. Gen. Physiol. 39:813.PubMedCrossRefGoogle Scholar
  104. Grimes, W. J., 1970, Sialic acid transferases and sialic acid levels in normal and transformed cells, Biochemistry 9:5083.PubMedCrossRefGoogle Scholar
  105. Guerin, C., Zachowski, A., Prigent, B., Parof, A., Dunia, I., Diawara, M. A., and Benedetti, E. L., 1974, Correlation between the mobility of inner plasma membrane structure and agglutination by concanavalin A in two cell lines of MOPC 173 plasmocytoma cells, Proc. Natl. Acad. Sci. U.S.A. 71:114.PubMedCrossRefGoogle Scholar
  106. Guidotti, G., 1972, The composition of biological membranes, Arch. Intern. Med. 129:202.CrossRefGoogle Scholar
  107. Hakomori, S. I., 1970, Cell-density dependent changes of glycolipids in fibroblasts and loss of this response in transformed cells, Proc. Natl. Acad. Sci. U.SA. 67:1741.CrossRefGoogle Scholar
  108. Hakomori, S. I., Saito, T., and Vogt, P. K., 1971, Transformation by Rous sarcoma virus: Effects on cellular glycolipids, Virology 44:609.PubMedCrossRefGoogle Scholar
  109. Halpern, M. S., Bolognesi, D. P., and Lewandowski, L. J., 1974, Isolation of the major viral glycoprotein and a putative precursor from cells transformed by avian sarcoma viruses, Proc. Natl. Acad. Sci. U.S.A. 71:2342.PubMedCrossRefGoogle Scholar
  110. Hanafusa, H., 1969, Rapid transformation of cells by Rous sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 63:318.PubMedCrossRefGoogle Scholar
  111. Hanafusa, H., Hanafusa, T., and Rubin, H., 1964, Analysis of the defectiveness of Rous sarcoma virus. II. Specification of RSV antigenicity by helper virus, Proc. Natl. Acad. Sci. U.S.A. 51:41.PubMedCrossRefGoogle Scholar
  112. Hanafusa, H., Aoki, T., Kawai, S., Miyomoto, T., and Wilsnack, R. E., 1973, Presence of antigen common to avian tumor viral envelope antigen in normal chick embryo cells, Virology 56:22.PubMedCrossRefGoogle Scholar
  113. Hanafusa, T., Hanafusa, H., and Miyomoto, T., 1970, Recovery of a new virus from apparently normal chick cells by infection with avian tumor viruses, Proc. Natl. Acad. Sci. U.S.A. 67:1797.PubMedCrossRefGoogle Scholar
  114. Hanafusa, T., Hanafusa, H., Miyomoto, T., and Fleissner, E., 1972, Existence and expression of tumor virus genes in chick embryo cells, Virology 47:475.PubMedCrossRefGoogle Scholar
  115. Hare, J. D., 1967, Transplant immunity to polyoma virus-induced tumor cells. IV. A polyoma strain defective in transplant antigen induction, Virology 31:625.PubMedCrossRefGoogle Scholar
  116. Haughton, G., and Nash, D. R., Transplantation antigens and viral carcinogenesis, Prog. Med. Virol. 11:248.Google Scholar
  117. Hayami, M., Hellström, I., and Hellström, K. E., 1973, Serum effects on cell-mediated destruction of Rous sarcomas, Int. J. Cancer 13:667.CrossRefGoogle Scholar
  118. Hayami, M., Hellström, I., Hellström, K. E., and Lannin, D. R., 1974, Further studies on the ability of regressor sera to block cell-mediated destruction of Rous sarcomas, Int. J. Cancer 13:43.PubMedCrossRefGoogle Scholar
  119. Hayes, W., 1968, Phage conversion, in: The Genetics of Bacteria and Their Viruses, pp. 464–469, Blackwell, Oxford.Google Scholar
  120. Hayward, W. S., and Hanafusa, H., 1973, Detection of avian tumor virus RNA in uninfected chicken embryo cells, J. Virol. 11:157.PubMedGoogle Scholar
  121. Heidrick, M. L., and Ryan, W. L., 1971, Adenosine 3′:5′-cyclic monophosphate and contact inhibition, Cancer Res. 31:1313.PubMedGoogle Scholar
  122. Hellström, K. E., and Hellström, I., 1974, Lymphocyte mediated cytotoxicity and blocking serum activity to tumor antigens, Advan. Immunol. 18:209.CrossRefGoogle Scholar
  123. Henkart, P., Humphreys, S., and Humphreys, T., 1973, Characterization of sponge aggregation factor: A unique proteoglycan complex, Biochemistry 12:3045.PubMedCrossRefGoogle Scholar
  124. Hogg, N., 1974, A comparison of membrane proteins of normal and transformed cells by lactoperoxidase labeling, Proc. Natl. Acad. Sci. U.S.A. 71:489.PubMedCrossRefGoogle Scholar
  125. Hsie, A. W., Jones, J., and Puck, T. T., 1971, Further changes in differentiation state accompanying the conversion of Chinese hamster cells to fibroblastic form by dibutyryl adenosine cyclic 3′:5′-monophosphate and hormones, Proc. Natl. Acad. Sci. U.S.A. 68:1648.PubMedCrossRefGoogle Scholar
  126. Huet, C., and Bernhard, W., 1974, Differences in the surface mobility between normal, SV40-, polyoma-, and adenovirus-transformed hamster cells, Int. J. Cancer 13:227.PubMedCrossRefGoogle Scholar
  127. Humphreys, T., 1963, Chemical dissolution and in vitro reconstruction of sponge cell adhesion. I. Isolation and functional demonstration of components involved, Dev. Biol. 8:27.PubMedCrossRefGoogle Scholar
  128. Hunter, W. M., 1973, Radioimmunoassay, in: Handbook of Experimental Immunology, Vol. I (D. M. Weir, ed.), pp. 17.1–17.36, Blackwell, Oxford.Google Scholar
  129. Hynes, R. O., 1973, Alteration of cell-surface proteins by viral transformation and by proteolysis, Proc. Natl. Acad. Sci. U.S.A. 70:3170.PubMedCrossRefGoogle Scholar
  130. Hynes, R. O., 1974, Role of surface alterations in cell transformation: The importance of proteases and surface proteins, Cell 1:147.CrossRefGoogle Scholar
  131. Hynes, R. O., and Bye, J. M., 1974, Density and cell cycle dependence of cell surface proteins in hamster fibroblasts, Cell 3:113.PubMedCrossRefGoogle Scholar
  132. Hynes, R. O., and Humphryes, K. C., 1974, Characterization of the external proteins of hamster fibroblasts, J. Cell Biol. 62:438.PubMedCrossRefGoogle Scholar
  133. Hynes, R. O., Wyke, J. A., Bye, J. M., Humphryes, K. C., and Pearlstein, E., 1975, Are proteases involved in altering surface proteins during viral transformation? in: Cold Spring Harbor Conference on Proteases and Biological Control (E. Reich, E. Shaw, and D. B. Rifkin, eds.), Cold Spring Harbor, N.Y.Google Scholar
  134. Inbar, M., and Sachs, L., 1973, Mobility of carbohydrate containing sites on the surface membrane in relation to the control of cell growth, FEBS Lett. 32:124.PubMedCrossRefGoogle Scholar
  135. Ishizaki, R., and Vogt, P. K., 1966, Immunological relationships among the envelope antigens of avian tumor viruses, Virology 30:375.PubMedCrossRefGoogle Scholar
  136. Jeejeebhoy, H. F., 1974, Stimulation of tumor growth by the immune response, Int. J. Cancer 13:665.PubMedCrossRefGoogle Scholar
  137. Johnson, G. S., Friedman, R. M., and Pastan, I., 1971, Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine 3′:5′-cyclic monophosphate and its derivatives, Proc. Natl. Acad. Sci. U.S.A. 68:425.PubMedCrossRefGoogle Scholar
  138. Jonsson, N., 1966, Studies on the occurrence of common specific transplantation antigens in Rous tumours of various mammalian species, Acta Pathol. Microbiol. Scand. 67:339.PubMedGoogle Scholar
  139. Jonsson, N., and Sjögren, H. O., 1965, Further studies on specific transplantation antigens in Rous sarcoma of mice, J. Exp. Med. 122:403.PubMedCrossRefGoogle Scholar
  140. Kagawa, Y., 1972, Reconstitution of oxidative phosphorylation, Biochim. Biophys. Acta 265:297.PubMedCrossRefGoogle Scholar
  141. Kapeller, M., and Doljanski, F., 1972, Agglutination of normal and Rous sarcoma virus-transformed chick embryo cells by concanavalin A and wheat germ agglutinin, Nature (London) New Biol. 235:184.Google Scholar
  142. Kawai, S., and Hanafusa, H., 1971, The effects of reciprocal changes in temperature on the transformed state of cells infected with a Rous sarcoma virus mutant, Virology 46:470.PubMedCrossRefGoogle Scholar
  143. Kijimoto, S., and Hakomori, S., 1971, Enhanced glycolipid: α-Galactosyltransferase activity in contact-inhibited hamster cells, and loss of this response in polyoma transformants, Biochem. Biophys. Res. Commun. 44:557.PubMedCrossRefGoogle Scholar
  144. Kijimoto, S., and Hakomori, S., 1972, Contact-dependent enhancement of net synthesis of Forssman glycolipid antigen and hematoside in NIL cells at the early stage of cell-to-cell contact, FEBS Lett, 25:38.PubMedCrossRefGoogle Scholar
  145. Klavius, J. V., Mesa-Tejada, T., and Weiss, M., 1971, Human carcinoma antigens cross-reacting with anti-embryonic antibodies, Nature (London) New Biol. 234:153.CrossRefGoogle Scholar
  146. Klein, G., 1969, Experimental studies in tumor immunology, Fed. Proc. 28:1739.PubMedGoogle Scholar
  147. Klein, G., 1972, Herpesviruses and oncogenesis, Proc. Natl. Acad. Sci. U.S.A. 69:1056.PubMedCrossRefGoogle Scholar
  148. Koldovsky, P., and Bubenik, J., 1964, Occurrence of tumors in mice after inoculation of Rous sarcoma and antigenic changes in these tumors. Folia Biol. (Praha) 10:81.Google Scholar
  149. Koldovsky, P., and Bubenik, J., 1965, Resistance of RSV induced tumours in mice, Folia Biol. (Praha) 11:198.Google Scholar
  150. Koldovsky, P., Svoboda, J., and Bubenik, J., 1966, Further studies on the immunobiology of tumor RVA2 induced by RSV in C57 Bl strains of mice, Folia Biol. (Praha) 12:1.Google Scholar
  151. Kuhns, W. J., Weinbaum, G., Turner, R. S., and Burger, M. M., 1973, Aggregation factors in marine sponges, in: Humoral Control of Growth and Differentiation (J. Lobue and A. S. Gordon, eds.), Academic Press, New York.Google Scholar
  152. Kurth, R., 1975, Differential induction of tumor antigens by transformation-defective virus mutants, J. Gen. Virol. 28:167.PubMedCrossRefGoogle Scholar
  153. Kurth, R., and Bauer, H., 1972a, Cell surface antigens induced by avian RNA tumor viruses: Detection by a cytotoxic microassay, Virology 47:426.Google Scholar
  154. Kurth, R., and Bauer, H., 1972b, Common tumor-specific surface antigens on cells of different species transformed by avian RNA tumor viruses, Virology 49:145.Google Scholar
  155. Kurth, R., and Bauer, H., 1973a, Avian oncornavirus induced tumor antigens of embryonic and unknown origin, Virology 56:496.Google Scholar
  156. Kurth, R., and Bauer, H., 1973b, Influence of dibutyryl cyclic AMP and theophylline on cell surface antigens of oncornavirus transformed cells, Nature (London) New Biol. 243:243.Google Scholar
  157. Kurth, R., and Bauer, H., 1973c, Correlation between intracellular cyclic AMP level and cell membrane antigenicity, Differentiation 1:323.Google Scholar
  158. Kurth, R., and Bauer, H., 1973d, An improved method for the production of antiserum against weakly immunogenic tumor antigens, Eur. J. Immunol. 3:95.Google Scholar
  159. Kurth, R., and Bauer, H., 1975, Avian RNA tumor viruses: A model for studying tumor associated cell surface alterations, BBA Rev. Cancer 417:1.Google Scholar
  160. Kurth, R., Friis, R. R., Wyke, J. A., and Bauer, H., 1975, Expression of tumor specific surface antigens on cells infected with temperature-sensitive mutants of avian sarcoma virus, Virology 64:400.PubMedCrossRefGoogle Scholar
  161. Lehman, J. M., and Sheppard, J. R., 1972, Agglutinability by plant lectins increases after RNA virus transformation, Virology 49:339.PubMedCrossRefGoogle Scholar
  162. Lilien, J. E., 1968, Specific enhancement of cell aggregation in vitro, Dev. Biol. 17:657.Google Scholar
  163. Lilien, J. E., and Moscona, A. A., 1967, Cell aggregation: Its enhancement by a supernatant from cultures of homologous cells, Science 157:70.PubMedCrossRefGoogle Scholar
  164. Lipkin, G., and Knecht, M. E., 1974, A diffusible factor restoring contact inhibition of growth to malignant melanocytes, Proc. Natl. Acad. Sci. U.S.A. 71:849.PubMedCrossRefGoogle Scholar
  165. Lindberg, U., and Darnell, J. E., 1970, SV40 specific RNA in the nucleus and polyribosomes of transformed cells, Proc. Natl. Acad. Sci. U.S.A. 65:1089.PubMedCrossRefGoogle Scholar
  166. Losick, R. M., and Robbins, P. W., 1969, The receptor site for a bacterial virus, Sci. Am. 221, 5:120.Google Scholar
  167. Mallucci, L., 1971, Binding of concanavalin A to normal and transformed cells as detected by immunofluorescence, Nature (London) New Biol. 233:241.Google Scholar
  168. Manes, C., 1974, Phasing of gene products during development, Cancer Res. 34:2044.PubMedGoogle Scholar
  169. Markert, C. L., 1968, Neoplasia: A disease of cell differentiation, Cancer Res. 28:1908.PubMedGoogle Scholar
  170. Martin, G. S., 1970, Rous sarcoma virus: A function required for the maintenance of the transformed state, Nature (London) 227:1021.CrossRefGoogle Scholar
  171. Meyers, P., Sigel, M. M., and Holden, T., 1972, Cross-protection in vivo against avian sarcoma virus subgroups A, B, and C induced by Rous-associated viruses, J. Natl. Cancer Inst. 49:173.PubMedGoogle Scholar
  172. Moore, E. G., and Temin, H. M., 1971, The lack of correlation between conversion by RNA tumour viruses and increased agglutinability of cells by concanavalin A and wheat germ agglutinin, Nature (London) 231:117.CrossRefGoogle Scholar
  173. Moscona, A. A., 1961, Rotation-mediated histogenetic aggregation of dissociated cells, Exp. Cell Res. 22:455.PubMedCrossRefGoogle Scholar
  174. Moscona, A. A., 1963, Studies on cell aggregation: Demonstration of materials with selective cell-binding activity, Proc. Natl. Acad. Sci. U.SA. 40:742.CrossRefGoogle Scholar
  175. Moscona, A. A., 1965, Recombination of dissociated cells and the development of cell aggregates, in: Cells and Tissues in Culture Vol. 1 (E. N. Willmer, ed.), pp. 489–529, Academic Press, New York.Google Scholar
  176. Moscona, A. A., 1971, Embryonic and neoplastic cell surfaces: Availability of receptors for concanavalin A and wheat germ agglutinin, Science 171:905.PubMedCrossRefGoogle Scholar
  177. Moscona, A. A., 1973, Cell aggregation, in: Cell Biology in Medicine (E. E. Bittar, ed.), pp. 571–591, Wiley, New York.Google Scholar
  178. Mukherji, B., and Hirshaut, Y., 1973, Evidence for fetal antigen in human sarcoma, Science 181:440.PubMedCrossRefGoogle Scholar
  179. Nicolson, G. L., 1971, Difference in topology of normal and tumour cell membranes shown by different surface distributions of ferritin-conjugated concanavalin A, Nature (London) New Biol. 233:244.Google Scholar
  180. Nicolson, G. L., 1972, Topography of membrane concanavalin A sites modified by proteolysis, Nature (London) New Biol. 239:193.Google Scholar
  181. Nicolson, G. L., and Singer, S. J., 1974, The distribution and asymmetry of mammalian cell surface saccharides utilizing ferritin-conjugated plant aggutinins as specific saccharide stains, J. Cell Biol. 60:236.PubMedCrossRefGoogle Scholar
  182. Nossal, G. J. V., Warner, N. L. Lewis, H. ., and Sprent, J., 1972, Quantitative features of a sandwich radioimmunolabelling technique for lymphocyte surface receptors, J. Exp. Med. 135:405.PubMedCrossRefGoogle Scholar
  183. Oda, K., and Dulbecco, R., 1968, Regulation and transcription of the Sv40 DNA in productively infected and in transformed cells, Proc. Natl. Acad. Sci. U.S.A. 60:525.PubMedCrossRefGoogle Scholar
  184. Olson, C., Luedke, A. J., and Brobst, D. F., 1962, Induced immunity of skin, vagina and urinary bladder to bovine papillomatosis, Cancer Res. 22:463.PubMedGoogle Scholar
  185. Oshiro, L. S., Riggs, J. L. Taylor, D. O. N., Lennette, H. H., and Huebner, R. J., 1971, Ferritin-labeled antibody studies of feline C-type particles, Cancer Res. 31:1100.PubMedGoogle Scholar
  186. Ossowski, L., Unkeless, J. C., Tobia, A., Quigley, J. P., Rifkin, D. B., and Reich, E., 1973a, An enzymatic function associated with transformation of fibroblasts by oncogenic druses. II. Mammalian fibroblast cultures transformed by DNA and RNA tumor viruses, J. Exp. Med. 137:112.PubMedCrossRefGoogle Scholar
  187. Ossowski, L., Quigley, J. P., Kellerman, G. M., and Reich, E., 1973b, Fibrinolysis associated with oncogenic transformation: Requirement of plasminogen for correlated changes in cellular morphology, colony formation in agar and cell migration, J. Exp. Med. 138:1056.PubMedCrossRefGoogle Scholar
  188. Ossowski, L., Quigley, J. P., and Reich, E., 1974, Fibrinolysis associated with oncogenic transformation: Morphological correlates, J. Biol. Chem. 249:4312.PubMedGoogle Scholar
  189. Ozanne, B., and Sambrook, J., 1971, Binding of radioactively labelled concanavalin A and wheat germ agglutinin to normal and virus-transformed cells, Nature (London) New Biol. 232:156.CrossRefGoogle Scholar
  190. Parmiani, G., and Lembo, R., 1972, Studies on the embryo-fetal origin of the individual tumor-associated antigens of chemically induced tumors, in: Embryonic and Fetal Antigens in Cancer, Vol. 2, (N. G. Anderson, J. H. Coggin, E. Cole, and J. W. Holleman, eds.), pp. 159–165, U.S. Department of Commerce, Springfield, Va.Google Scholar
  191. Paul, D., 1972, Effects of cyclic AMP on SV3T3 cells in culture, Nature (London) New Biol. 240:179.CrossRefGoogle Scholar
  192. Payne, L. N., and Chubb, R., 1968, Studies on the nature and genetic control of an antigen in normal chick embryos which reacts for the COFAL test, J. Gen. Virol. 3:379.PubMedCrossRefGoogle Scholar
  193. Perdue, J. F., Kletzien, R., and Miller, K., 1971, The isolation and characterization of plasma membrane from cultured cells. I. The chemical composition of membrane isolated from uninfected and oncogenic RNA-virus converted chick embryo fibroblasts, Biochim. Biophys. Acta 249:419.PubMedCrossRefGoogle Scholar
  194. Perdue, J. F., Kletzien, R., and Miller, K., 1971, The isolation and characterization of plasma membrane from cultured cells. IV. The carbohydrate composition of membranes isolated from oncogenic RNA-virus converted chick embryo fibroblasts, Biochim. Biophys. Acta 266:505.Google Scholar
  195. Phillips, E. R., and Perdue, J. F., 1974, Ultrastructural distribution of cell surface antigens in avian tumor virus-infected chick embryo fibroblasts, J. Cell Biol. 61:743.PubMedCrossRefGoogle Scholar
  196. Pierce, G. B. 1970, Differentiation of normal and malignant cells, Fed. Proc. 29:1248.PubMedGoogle Scholar
  197. Pierce, G. B., and Johnson, L. D., 1971, Differentiation and cancer, In Vitro 7:140.PubMedCrossRefGoogle Scholar
  198. Pollack, R. E., and Burger, M. M., 1969, Surface-specific characteristics of a contact-inhibited cell line containing the SV40 genome, Proc. Natl. Acad. Sci. U.S.A. 62:1074.PubMedCrossRefGoogle Scholar
  199. Poste, G., 1972, Changes in susceptibility of normal cells to agglutination by plant lectins following modification of cell coat material, Exp. Cell Res. 73:319.PubMedCrossRefGoogle Scholar
  200. Poste, G., and Reeve, P., 1972, Agglutination of normal cells by plant lectins following infection with non-oncogenic viruses, Nature (London) New Biol. 237:113.CrossRefGoogle Scholar
  201. Prehn, R. T., and Lappe, M. A., 1971, An immunostimulation theory of tumor development, Transplant. Rev. 7:26.PubMedGoogle Scholar
  202. Pressman, D., Day E. D., and Blau, M., 1957, The use of paired-labeling in the determination of tumor-localizing antibodies, Cancer Res. 17:845.PubMedGoogle Scholar
  203. Quigley, J. P., Rifkin, D. P., and Reich, E., 1971, Phospholipid composition of Rous sarcoma virus host cell membranes and other enveloped RNA viruses, Virology 46:106.PubMedCrossRefGoogle Scholar
  204. Quigley, J. P., Rifkin, D. P., and Reich, E., 1972, Lipid studies of Rous sarcoma virus and host cell membranes, Virology 50:550.PubMedCrossRefGoogle Scholar
  205. Quigley, J. P., Ossowski, L., and Reich, E., 1974, Plasminogen, the serum proenzyme activated by factors from cells transformed by oncogenic viruses, J. Biol. Chem. 249:4306.PubMedGoogle Scholar
  206. Rapin, A. N. C., and Burger, M. M., 1974, Tumor cell surfaces: General alterations detected by agglutinins, Advan. Cancer Res. 20:1.CrossRefGoogle Scholar
  207. Reich, E., 1973, Tumor-associated fibrinolysis, Fed. Proc. 32:2174.PubMedGoogle Scholar
  208. Reisfeld, R. A., and Kahan, B. D., 1971, Extraction and purification of soluble histocompatibility antigens, Transplant. Rev. 6:81.PubMedGoogle Scholar
  209. Rifkin, D. B., and Compans, R. W., 1971, Identification of the spike proteins of Rous sarcoma virus, Virology 46:485.PubMedCrossRefGoogle Scholar
  210. Robbins, K. C., and Summaria, L., 1970, Human plasminogen and plasmin, in: Methods in Enzymology, Vol. 19 (S. P. Colowick and N. O. Kaplan, eds.), pp. 184–199, Academic Press, New York.Google Scholar
  211. Robbins, P. W., and Macpherson, I., 1971, The control of glycolipid synthesis in a cultured hamster cell line, Nature (London) 229:569.CrossRefGoogle Scholar
  212. Robbins, P. W., Wickus, G. G., Branton, P. E., Gaffney, B. J., Hirschberg, C. B., Fuchs, P., and Blumberg, P. M., 1974, The chick fibroblast cell surface following transformation by Rous sarcoma virus, Cold Spring Harbor Symp. Quant. Biol. 39:1173.CrossRefGoogle Scholar
  213. Robbins, S. L., 1968, Pathology, p. 112, Saunders, Philadelphia.Google Scholar
  214. Robertson, J. D., 1972, The structure of biological membranes, Arch. Intern. Med. 129:202.PubMedCrossRefGoogle Scholar
  215. Robinson, A. G., Butcher, R. W., and Sutherland, E. W., 1971, Cyclic AMP, Academic Press, New York.Google Scholar
  216. Rohrschneider, L., Kurth, R., and Bauer, H., 1975, Biochemical characterization of tumor specific cell surface antigens (TSSA) of avian oncornavirus transformed cells, Virology 66:481.PubMedCrossRefGoogle Scholar
  217. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion, in: Chemistry and Physics of Lipids, Vol. 5, pp. 270–297, North-Holland, Amsterdam.Google Scholar
  218. Rosenblith, J. Z., Ukena, T. E., Yin, H. H., Berlin, R. D., and Kamovsky, M. J., 1973, A comparative evaluation of the distribution of concanavalin A-binding sites on the surface of normal, virally-transformed, and protease-treated fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 70:1625.PubMedCrossRefGoogle Scholar
  219. Rosenthal, P. N., Robinson, H. L., Robinson, W. S., Hanafusa, T., and Hanafusa, H., 1971, DNA in uninfected and virus-infected cells complementary to avian tumor virus RNA, Proc. Natl. Acad. Sci. U.S.A. 68:2336.PubMedCrossRefGoogle Scholar
  220. Roth, S., and White, D., 1972, Intercellular contact and cell-surface galactosyl transferase activity, Proc. Natl. Acad. Sci. U.S.A. 69:485.PubMedCrossRefGoogle Scholar
  221. Roth, S., McGuire, E. J., and Roseman, S., 1971a, Evidence for cell-surface glycosyl-transferases: Their potential role in cellular recognition, J. Cell Biol. 51:536.PubMedCrossRefGoogle Scholar
  222. Roth, S., McGuire, E. J., and Roseman, S., 1971b, An assay for intercellular adhesive specificity, J. Cell Biol. 51:525.PubMedCrossRefGoogle Scholar
  223. Rubin, H., 1970, Overgrowth stimulating factor released from Rous sarcoma cells, Science 167:1271.PubMedCrossRefGoogle Scholar
  224. Ruoslahti, E., and Vaheri, A., 1974, Novel human serum protein from fibroblast plasma membrane, Nature (London) 248:789.CrossRefGoogle Scholar
  225. Ruoslahti, E., Vaheri, A., Kunsela, P., and Linder, E., 1973, Fibroblast surface antigen: A new serum protein, Biochim. Biophys. Acta 322:352.PubMedCrossRefGoogle Scholar
  226. Sakiyama, H., Gross, S. R., and Robbins, P. W., 1972, Glycolipid synthesis in normal and virus-transformed hamster cell lines, Proc. Natl. Acad. Sci. U.S.A. 69:872.PubMedCrossRefGoogle Scholar
  227. Salzberg, S., and Raskas, H. J., 1972, Surface changes of human cells productively infected with human adenoviruses, Virology 48:631.PubMedCrossRefGoogle Scholar
  228. Sambrook, J., Westphal, H., Srinivasan, P. R., and Dulbecco, R., 1968, The integrated state of viral DNA in SV40 transformed cells, Proc. Natl. Acad. Sci. U.S.A. 60:1288.PubMedCrossRefGoogle Scholar
  229. Schnebli, H. P., 1972, A protease-like activity associated with malignant cells, Schweiz. Med. Wochenschr. 102:1994.Google Scholar
  230. Schnebli, H. P., and Burger, M. M., 1972, Selective inhibition of growth of transformed cells by protease inhibitors, Proc. Natl. Acad. Sci. U.S.A. 69:3825.PubMedCrossRefGoogle Scholar
  231. Schöne, G., 1906, Untersuchungen über die Karzinomimmunität bei Mäusen, Muench. Med. Wochenschr. 53:2517.Google Scholar
  232. Sefton, B. M., and Rubin, H., 1970, Release from density-dependent growth inhibition by proteolytic enzymes, Nature (London) 227:893.CrossRefGoogle Scholar
  233. Sela, B., Lis, H., Sharon, N., and Sachs, L., 1970, Different locations of carbohydrate containing sites in the surface membrane of normal and transformed mammalian cells, J. Membr. Biol. 3:267.CrossRefGoogle Scholar
  234. Sela, B. A., Lis, H., Sharon, N., and Sachs, L., 1971, Quantitation of N-acetyl-D-galactosamine-like sites of the surface membrane of normal and transformed mammalian cells, Biochim. Biophys. Acta 249:564.PubMedCrossRefGoogle Scholar
  235. Sharon, N., and Lis, H., 1972, Lectins: Cell-agglutinating and sugar-specific proteins, Science 177:949.PubMedCrossRefGoogle Scholar
  236. Sheppard, J. R., 1971, Restoration of contact-inhibited growth to transformed cells by dibutyryl adenosine 3′:5′-cyclic monophosphate, Proc. Natl. Acad. Sci. U.S.A. 68:1316.PubMedCrossRefGoogle Scholar
  237. Sheppard, J. R., Levine, A. J., and Burger, M. M., 1971, Cell surface changes after infection with oncogenic viruses: Requirements for synthesis of host DNA, Science 172:1345.PubMedCrossRefGoogle Scholar
  238. Shimizu, T., and Rubin, H., 1964, The dual origin of non-infective Rous sarcomas, J. Natl. Cancer Inst. 33:79.PubMedGoogle Scholar
  239. Shinitzky, M., and Inbar, M., 1974, Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells, J. Mol. Biol. 85:603.PubMedCrossRefGoogle Scholar
  240. Shoham, J., and Sachs, L., 1974, Different cyclic changes in the surface membrane of normal and malignant transformed cells, Exp. Cell Res. 85:8.PubMedCrossRefGoogle Scholar
  241. Siegert, W., Konings, R. N. H., Bauer, H., and Hofschneider, P. H., 1972, Translation of avian myeloblastosis virus RNA in a cell-free lysate of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 69:888.CrossRefGoogle Scholar
  242. Sigel, M. M., Fugman, R. A., and Stolfi, R. L., 1970, Immunochemical studies on the antibodies in Rous sarcoma, in: Immunity and Tolerance in Oncogenesis (L. Seven, ed.), pp. 117–133, Perugia Press.Google Scholar
  243. Sigel, M. M., Myers, P., and Holden, H. T., 1971, Resistance to Rous sarcoma elicited by immunization with live virus, Proc. Soc. Exp. Biol. Med. 137:142.PubMedGoogle Scholar
  244. Simkovic, D., 1972, Characteristics of tumors induced in mammals, especially rodents, by viruses of the avian leukosis sarcoma group, Advan. Virus Res. 17:95.CrossRefGoogle Scholar
  245. Singer, S. J., 1971, The molecular organization of biological membranes, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 186–247, Academic Press, New York.Google Scholar
  246. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.PubMedCrossRefGoogle Scholar
  247. Sjögren, H. O., and Jonsson, N., 1963, Resistance against isotransplantation of mouse tumors induced by Rous sarcoma virus, Exp. Cell Res. 32:618.CrossRefGoogle Scholar
  248. Smets, L. A., 1972, Contact inhibition of transformed cells incompletely restored by dibutyryl cyclic AMP, Nature (London) New Biol. 239:123.Google Scholar
  249. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62:1.PubMedCrossRefGoogle Scholar
  250. Stone, K. R., Smith, R. E., and Joklik, W. K., 1974, Changes in membrane polypeptides that occur when chick embryo fibroblasts and NRK cells are transformed with avian sarcoma viruses, Virology 58:86.PubMedCrossRefGoogle Scholar
  251. Strouk, V., Grundner, G., Fenyö, E. M., Lamon, E., Skurzak, H., and Klein, G., 1972, Lack of distinctive surface antigen on cells transformed by murine sarcoma virus, J. Exp. Med. 136:344.PubMedCrossRefGoogle Scholar
  252. Sumner, J. B., and Howell, S. F., 1936, The role of divalent metals in the reversible inactivation of jack bean haemagglutinin, J. Biol. Chem. 115:583.Google Scholar
  253. Svoboda, J., Donner, L., and Mach, O., 1974, Virus productive transformation of marsupial cells by Schmidt-Ruppin strain of RSV, Nature (London) 248:503.CrossRefGoogle Scholar
  254. Tanigaki, N., Yagi, Y., and Pressman, D., 1967, Application of the paired label radioanti-body technique to tissue sections and cell smears, J. Immunol. 98:274.PubMedGoogle Scholar
  255. Tatarinov, J., 1964, Detection of embryospecific α-globulin in the blood sera of a patient with primary liver tumor, Vopr. Med. Khim. 10:90.PubMedGoogle Scholar
  256. Temin, H. M., 1966, Studies on carcinogenesis of avian sarcoma viruses. III. The differential effect of serum and polyanions on multiplication of uninfected and converted cells, J. Natl. Cancer Inst. 37:167.PubMedGoogle Scholar
  257. Temin, H. M., 1967, Control by Factors in Serum of Multiplication of Uninfected Cells and Cells Infected and Converted by Avian Sarcoma Viruses, Wistar Institute Monograph No. 7, p. 103, Wistar Institute Press, Philadelphia.Google Scholar
  258. Temin, H. M., and Baltimore, D., 1972, RNA-directed DNA synthesis and RNA tumor viruses, Advan. Virus Res. 17:129.CrossRefGoogle Scholar
  259. Teplitz, R. L., Saunders, B. G., Brodetsky, A. M., Fung, H., and Wiley, K. L., 1974, Fetal-leukemic antigen of chicken blood cells, Cancer Res. 34:1049.PubMedGoogle Scholar
  260. Tevethia, S. S., Diamandopolous, G. T., Rapp, F., and Enders, J. F., 1968, Lack of relationship between virus-specific and transplantation antigens in hamster cells transformed by simian papovavirus SV40, J. Immunol. 101:1192.PubMedGoogle Scholar
  261. Thompson, K. D., and Linna, T. J., 1973, Bursa-dependent and thymus-dependent “surveillance” of a virus induced tumour in the chick, Nature (London) New Biol. 245:10.Google Scholar
  262. Ting, C. C., Lavrin, D. H., Shiu, G., and Heberman, R. B., 1972, Expression of fetal antigens in tumor cells, Proc. Natl. Acad. Sci. U.S.A. 69:1664.PubMedCrossRefGoogle Scholar
  263. Todaro, G. J., Lazar, G. K., and Green, H., 1965, The initiation of cell division in a contact-inhibited mammalian cell line, J. Cell. Comp. Physiol. 66:325.CrossRefGoogle Scholar
  264. Tonegawa, S., Walter, G., Bernardini, A., and Dulbecco, R., 1970, Transcription of the SV40 genome in transformed cells and during lytic infection, Cold Spring Harbor Symp. Quant. Biol. 35:823.CrossRefGoogle Scholar
  265. Tooze, J., 1973, The Molecular Biology of Tumor Viruses, Cold Spring Harbor Monograph, Cold Spring Harbor, N.Y.Google Scholar
  266. Trowbridge, I. S., and Hilborn, D. A., 1974, Effects of succinyl-Con A on the growth of normal and transformed cells, Nature (London) 250:304.CrossRefGoogle Scholar
  267. Turner, R. S., and Burger, M. M., 1973, Involvement of a carbohydrate group in the active site for surface guided reassociation of animal cells, Nature (London) 244:509.CrossRefGoogle Scholar
  268. Twardzik, D., Simonds, J., Oskarsson, H., and Portugal, F., 1973, Translation of AKR-murine leukemia viral RNA in an E. coli cell-free system. Biochem. Biophys. Res. Commun. 52:1108.PubMedCrossRefGoogle Scholar
  269. Tyler, A., 1942, Specific interacting substances of eggs and sperm, West. J. Surg. Obstet. Gynecol. 50:126.Google Scholar
  270. Unkeless, J. C., Tobia, A., Ossowski, L., Quigley, J. P., Rifkin, D. B., and Reich, E., 1973, An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. I. Chick embryo fibroblast cultures transformed by avian RNA tumor viruses, J. Exp. Med. 137:85.PubMedCrossRefGoogle Scholar
  271. Unkeless, J., Danø, K., Kellerman, G. M., and Reich, E., 1974, Fibrinolysis associated with oncogenic transformation: Partial purification and characterization of the cell factor, a plasminogen activator, J. Biol. Chem. 249:4295.PubMedGoogle Scholar
  272. Vaheri, A., and Ruoslahti, E., 1974, Disappearance of a major cell-type specific surface antigen (SF) after transformation of fibroblasts by Rous sarcoma virus, Int. J. Cancer 13:579.PubMedCrossRefGoogle Scholar
  273. Vaheri, A., and Ruoslahti, E., 1975, Fibroblast surface (SF) antigen molecules and their loss from virus transformed cells: A major alteration in the cell surface, in: Cold Spring Harbor Conference on Cell Proliferation, Cold Spring Harbor, N.Y.Google Scholar
  274. Vogt, P. K., 1971, Spontaneous segration of non-transforming viruses from cloned sarcoma viruses, Virology 46:939.PubMedCrossRefGoogle Scholar
  275. Vogt, P. K., and Friis, R. R., 1971, An avian leukosis virus related to RSV(0): Properties and evidence for helper activity, Virology 43:223.PubMedCrossRefGoogle Scholar
  276. Vogt, P. K., and Ishizaki, R., 1965, Reciprocal patterns of genetic resistance to avian tumor viruses in two lines of chickens, Virology 26:664.PubMedCrossRefGoogle Scholar
  277. Vogt, P. K., and Ishizaki, R., 1966, Patterns of viral interference in the avian leukosis sarcoma complex, Virology 30:368.PubMedCrossRefGoogle Scholar
  278. Vogt, P. K., and Lukyx, N., 1963, Observations on the surface of cells infected with Rous sarcoma virus, Virology, 20:75.PubMedCrossRefGoogle Scholar
  279. Vogt, P. K., and Rubin, H., 1961, Localization of infectious virus and virus antigen in chick fibroblasts during successive stages of infection with Rous sarcoma virus, Virology 13:528.PubMedCrossRefGoogle Scholar
  280. Vogt, P. K., Weiss, R. A., and Hanafusa, H., 1974, Proposal for numbering mutants of avian leukosis and sarcoma viruses, J. Virol. 13:551.PubMedGoogle Scholar
  281. Vogt, V. M., and Eisenmann, R., 1973, Identification of a large polypeptide precursor of avian oncornavirus proteins, Proc. Natl. Acad. Sci. U.S.A. 70:1734.PubMedCrossRefGoogle Scholar
  282. Vogt, V. M., Eisenmann, R., and Diggelmann, H., 1974, Synthesis of the structural proteins of avian RNA tumor viruses: The cleavage scheme and the ordering of proteins on the precursor polypeptide, Cold Spring Harbor Symp. Quant. Biol. 39:1067.CrossRefGoogle Scholar
  283. Warren, L., Fuhrer, J. P., and Buck, C. A., 1972a Surface glycoproteins of normal and transformed cells: A difference determined by sialic acid and a growth-dependent sialyl transferase, Proc. Natl. Acad. Sci. U.S.A. 69:1838.PubMedCrossRefGoogle Scholar
  284. Warren, L., Critchley, D., and Macpherson, I., 1972b, Surface glycoproteins and glycolipids of chicken embryo cells transformed by a temperature-sensitive mutant of Rous sarcoma virus, Nature (London) 235:275.CrossRefGoogle Scholar
  285. Weber, K., Lazarides, E., Goldman, R., and Pollack, R., 1974, Localization and distribution of actin fibers in non-muscle cells, Cold Spring Harbor Symp. Quant. Biol. 39:363.CrossRefGoogle Scholar
  286. Weinbaum, G., and Burger, M. M., 1973, Two component system for surface guided reassociation of animal cells, Nature (London) 244:510.CrossRefGoogle Scholar
  287. Weiss, P., 1947, The problem of specificity in growth and development, Yale J. Biol. Med. 19:235.PubMedGoogle Scholar
  288. Weiss, R. A., 1969a, The host range of Bryan strain Rous sarcoma virus synthesized in the absence of helper virus, J. Gen. Virol. 5:511.CrossRefGoogle Scholar
  289. Weiss, R. A., 1969b, Interference and neutralization studies with Bryan strain Rous sarcoma virus synthesized in the absence of helper virus, J. Gen. Virol. 5:529.CrossRefGoogle Scholar
  290. Weiss, R. A., 1975, Genetic transmission of RNA tumor viruses, Perspect. Virol. 9:165.Google Scholar
  291. Weiss, R. A., Friis, R. R., Katz, E., and Vogt, P. K., 1971, Induction of avian tumor viruses in normal cells by physical and chemical carcinogens, Virology 46:920.PubMedCrossRefGoogle Scholar
  292. Wickus, G. G., and Robbins, P. W., 1973, Plasma membrane proteins of normal and Rous sarcoma virus-transformed chick-embryo fibroblasts. Nature (London) New Biol. 245:65.CrossRefGoogle Scholar
  293. Wickus, G. G., Branton, P. E., and Robbins, P. W., 1974, Rous sarcoma virus transformation of the chick cell surface, in: Control of Proliferation in Animal Cells, Vol. 1 (B. Clarkson and R. Baserga, eds.), p. 541, Cold Spring Harbor Conference on Cell Proliferation, Cold Spring Harbor, N.Y.Google Scholar
  294. Wiesnieski, B. J., Williams, R. E., and Fox, C. F., 1973, Manipulation of fatty acid composition in animal cells grown in culture, Proc. Natl. Acad. Sci. U.S.A. 70:3669.CrossRefGoogle Scholar
  295. Willingham, M.C., Johnson, G. S., and Pastan, I., 1972, Control of DNA synthesis and mitosis in 3T3 cells by cyclic AMP, Biochem. Biophys. Res. Commun. 48:743.PubMedCrossRefGoogle Scholar
  296. Witter, R. L., Nazerian, K., Purchase, H. G., and Burgoyne, G. M., 1970, Isolation from turkeys of a cell-associated herpesvirus antigenically related to Marek’s disease virus, Am. J. Vet. Res. 31:525.PubMedGoogle Scholar
  297. Wolpert, L., 1969, Positional information and the spatial pattern of cellular differentiation, J. Theor. Biol. 25:1.PubMedCrossRefGoogle Scholar
  298. Wolpert, L., 1971, Positional information and pattern formation, Curr. Top. Dev. Biol. 6:183.PubMedCrossRefGoogle Scholar
  299. Wyke, J. A., 1974, The genetics of C-type RNA tumor viruses, Int. Rev. Cytol. 38:67.PubMedCrossRefGoogle Scholar
  300. Wyke, J. A., Bell, J. G., and Beamand, J. A., 1974, Genetic recombination among temperature sensitive mutants of Rous sarcoma virus, Cold Spring Harbor Symp. Quant. Biol. 39:897.CrossRefGoogle Scholar
  301. Yalow, R. S., and Berson, S. A., 1960, Immunoassay of endogenous plasma insulin in man, 7. Clin. Invest. 39:1157.CrossRefGoogle Scholar
  302. Yeh, J., and Fisher, H. W., 1969, A diffusible factor which sustains contact inhibition of replication, J. Cell Biol. 40:382.PubMedCrossRefGoogle Scholar
  303. Yu, J., Fishman, D. A., and Steck, T. L., 1973, Selective solubilization of proteins from red blood cell membranes by nonionic detergent, J. Supramol. Struct. 1:220.PubMedCrossRefGoogle Scholar
  304. Zarling, J. M., and Tevethia, S. T., 1971, Expression of concanavalin binding sites in rabbit kidney cells infected with vaccinia virus, Virology 45:313.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Reinhard Kurth
    • 1
  1. 1.Department of Tumour VirologyImperial Cancer Research Fund LaboratoriesLondonEngland

Personalised recommendations