Advertisement

Biomembranes pp 131-165 | Cite as

Organization of Glycoprotein and Glycolipid in the Plasma Membrane of Normal and Transformed Cells as Revealed by Galactose Oxidase

  • Carl G. Gahmberg
  • Sen-itiroh Hakomori
Part of the Biomembranes book series (B, volume 8)

Abstract

Plasma membranes of mammalian cells have been characterized by their higher content of glycosphingolipids (Weinstein et al., 1967; Dod and Gray, 1968; Klenk and Choppin, 1970; Renkonen et al., 1970; Yogeeswaran et al., 1972; Critchley et al., 1973) and by the presence of a particular glycoprotein, as indicated by the higher incorporation of radioactive fucose or glucosamine into isolated plasma membranes (Gahmberg, 1971). In fact, the amounts of glycolipids and of protein-bound fucose are good markers for plasma membranes (Renkonen et al., 1970; Gahmberg, 1971). During the last several years, surface carbohydrates have been implicated in a variety of biological phenomena, such as cellular adhesion (Roseman, 1971; Roth and White, 1972), the lymphocyte homing phenomenon (Gesner and Ginsburg, 1964), lectin-induced agglutination of transformed cells (Burger, 1969; Inbar and Sachs, 1969), specific recognition of homologous cells by tectal cells during a particular term of development (Gottlieb et al., 1974), and histotypic aggregation of retinal cells (Lilien and Moscona, 1967; Moscona, 1971) and of sponge cells (Humphrey, 1963).

Keywords

Sponge Cell Polyoma Virus Human Erythrocyte Membrane Surface Label Galactose Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avigad, G., Amaral, D., Asensio, C., and Horecker, B. L., 1962, The D-galactose oxidase of Polyporus circinatus, J. Biol. Chem. 237:2736.Google Scholar
  2. Bretscher, M. S., 1971, Human erythrocyte membranes: Specific labeling of surface proteins, J. Mol. Biol. 58:775.PubMedCrossRefGoogle Scholar
  3. Bretscher, M. S., 1973, Membrane structure: Some general principles, Science 181:622.PubMedCrossRefGoogle Scholar
  4. Buck, C., Glick, M. C., and Warren, L., 1970, A comparative study of glycoproteins from the surface of control and Rous sarcoma virus transformed hamster cells, Biochemistry 9:4567.PubMedCrossRefGoogle Scholar
  5. Buck, C., Glick, M. C., and Warren, L., 1971, Effect of growth on the glycoproteins from the surfaces of control and Rous sarcoma virus transformed cells, Biochemistry 10:2176.PubMedCrossRefGoogle Scholar
  6. Burger, M. M., 1969, Difference in the architecture of the surface membrane of normal and virally transformed cells, Proc. Natl. Acad. Sci. U.S.A. 62:994.PubMedCrossRefGoogle Scholar
  7. Cikes, M., and Friberg, S., 1971, Expression of H-2 and Moloney leukemia virus determined cell surface antigens in synchronized cultures of a mouse cell line, Proc. Natl. Acad. Sci. U.S.A. 68:566.PubMedCrossRefGoogle Scholar
  8. Cooper, J. A. D., Smith, W., Bacila, M., and Medina, H., 1959, Galactose oxidase of Polyporus circinatus, J. Biol. Chem. 234:445.Google Scholar
  9. Critchley, D. R., and Macpherson, I., 1973, Cell density-dependent glycolipids in NIL2 hamster cells derived from malignant and transformed cell lines, Biochim. Biophys. Acta 246:145.Google Scholar
  10. Critchley, D. R., Macpherson, I., and Graham, J. M., 1973, Subcellular distribution of glycolipids in a hamster cell line, FEBS Lett. 32:37.PubMedCrossRefGoogle Scholar
  11. Degani, C., and Boyer, P. D., 1973, A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum adenosine triphosphatase, J. Biol. Chem. 248:8222.PubMedGoogle Scholar
  12. Dod, B. J., and Gray, G. M., 1968, The lipid composition of rat liver plasma membranes, Biochim. Biophys. Acta 150:397.PubMedCrossRefGoogle Scholar
  13. Dulbecco, R., and Eckhardt, W., 1970, Temperature-dependent properties of cells transformed by a thermosensitive mutant of polyoma virus, Proc. Natl. Acad. Sci. U.S.A. 67:1775.PubMedCrossRefGoogle Scholar
  14. Eckhardt, W., Dulbecco, R., and Burger, M. M., 1971, Temperature-dependent surface changes in cells infected or transformed by a thermosensitive mutant of polyoma virus, Proc. Natl. Acad. Sci. U.S.A. 68:283.CrossRefGoogle Scholar
  15. Gahmberg, C. G., 1971, Proteins and glycoproteins of hamster kidney fibroblasts, Biochim. Biophys. Acta 249:81.PubMedCrossRefGoogle Scholar
  16. Gahmberg, C. G., and Hakomori, S., 1973a, External labeling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes, J. Biol. Chem. 248:4311.PubMedGoogle Scholar
  17. Gahmberg, C. G., and Hakomori, S., 1973b, Altered growth behavior of malignant cells associated with changes in externally labeled glycoprotein and glycolipid, Proc. Natl. Acad. Sci. U.S.A. 70:3329.PubMedCrossRefGoogle Scholar
  18. Gahmberg, C. G., and Hakomori, S., 1974, Organization of glycolipids and glycoproteins in surface membranes: Dependency on cell cycle and on transformation, Biochem. Biophys. Res. Commun. 59:283.PubMedCrossRefGoogle Scholar
  19. Gahmberg, C. G., and Hakomori, S., 1975a, Surface carbohydrates of hamster fibroblasts I. Chemical characterization of surface-labeled glycosphingolipids and a specific ceramide tetrasaccharide for transformants, J. Biol. Chem. 250:2438.Google Scholar
  20. Gahmberg, C. G., and Hakomori, S., 1975b, Surface carbohydrates of hamster fibroblasts II. Interaction of hamster NIL cell surfaces with Ricinus communis lectin and concanavalin A as revealed by surface galactosyl label, J. Biol. Chem. 250:2447.PubMedGoogle Scholar
  21. Gahmberg, C. G., Kiehn, D., and Hakomori, S., 1974, Changes in a surface-labeled galactoprotein and in glycolipid concentrations in cells transformed by a temperature-sensitive polyoma virus mutant, Nature (London) 248:413.CrossRefGoogle Scholar
  22. Galavasi, G., Schenke, J., and Bootsma, D., 1966, Synchronization of mammalian cells in vitro by inhibition of DNA synthesis, Exp. Cell Res. 41:428.CrossRefGoogle Scholar
  23. Gesner, B. M., and Ginsburg, V., 1964, Effect of glycosidases on the fate of transfused lymphocytes, Proc. Natl. Acad. Sci. U.S.A. 52:750.PubMedCrossRefGoogle Scholar
  24. Glick, M. C., and Buck, C. A., 1973, Glycoproteins from the surface of metaphase cells, Biochemistry 12:85.PubMedCrossRefGoogle Scholar
  25. Gottlieb, D. I., Merrell, R., and Glaser, L., 1974, Temporal changes in embryonal cell surface recognition, Proc. Natl. Acad. Sci. U.S.A. 71:1800.PubMedCrossRefGoogle Scholar
  26. Hajra, A. K., Bowen, D. M., Kishimoto, Y., and Radin, N. S., 1966, Cerebroside galactosidase of brain, J. Lipid Res. 7:379.PubMedGoogle Scholar
  27. Hakomori, S., 1970, Cell density-dependent changes of glycolipid concentrations in fibroblasts and loss of this response in virus-transformed cells, Proc. Natl. Acad. Sci. U.S.A. 67:1741.PubMedCrossRefGoogle Scholar
  28. Hakomori, S., 1973, Glycolipids of tumor cell membranes, in: Advances in Cancer Research, Vol. 18 (S. Weinhouse, ed.), pp. 265–315, Academic Press, New York.Google Scholar
  29. Hakomori, S., and Kobata, A., 1975, Blood group antigens, in: The Antigens, Vol. 2 (M. Sela, ed.), Academic Press, New York.Google Scholar
  30. Hakomori, S., Teather, C., and Andrews, H. D., 1968, Organizational difference of cell surface hematoside in normal and virally transformed cells, Biochem. Biophys. Res. Commun. 33:563.PubMedCrossRefGoogle Scholar
  31. Humphreys, T., 1963, Chemical dissolution and in vitro reconstruction of sponge cell adhesions. I, Dev. Biol. 8:27.PubMedCrossRefGoogle Scholar
  32. Inbar, M., and Sachs, L., 1969, Structural difference in sites on the surface membrane of normal and transformed cells, Nature (London) 223:710.CrossRefGoogle Scholar
  33. Kijimoto, S., and Hakomori, S., 1972, Contact-dependent enhancement of net synthesis of Forssman glycolipid antigen and hematoside in NIL cells at the early stage of cell-to-cell contact, FEBS Lett. 25:38.PubMedCrossRefGoogle Scholar
  34. Klenk, H. D., and Choppin, P. W., 1970, Glycosphingolipids of plasma membranes of cultured cells and an enveloped virus (SVS) grown in these cells, Proc. Natl. Acad. Sci. U.S.A. 66:57.PubMedCrossRefGoogle Scholar
  35. Laine, R. A., Esselman, W. J., and Sweeley, C. C., 1972, Gas liquid chromatography of carbohydrates, in: Methods of Enzymology, Vol. 28 (V. Ginsburg, ed.), pp. 159–167, Academic Press, New York.Google Scholar
  36. Laine, R. A., Yogeeswaran, G., and Hakomori, S., 1974, Glycosphingolipids covalently linked to agarose gel or glass beads, J. Biol. Chem. 249:4460.PubMedGoogle Scholar
  37. Liao, T. H., Gallop, P. M., and Blumenfeld, O., 1973, Modification of sialyl residues of sialoglycoprotein(s) of the human erythrocyte surface, J. Biol. Chem. 218:8247.Google Scholar
  38. Lilien, J. E., and Moscona, A. A., 1967, Cell aggregation: Its enhancement by a supernatant from cultures of homologous cells, Science 157:70.PubMedCrossRefGoogle Scholar
  39. Maddy, A. H., 1964, A fluorescent label for the outer components of the plasma membrane, Biochim. Biophys. Acta 88:390.PubMedGoogle Scholar
  40. Morell, A. G., Van Den Hamer, C. J. A., Scheinberg, I. H., and Ashwell, G., 1966, Physical and chemical studies on ceruloplasmin. IV, J. Biol. Chem. 241:3745.PubMedGoogle Scholar
  41. Moscona, A. A., 1971, Embryonic and neoplastic cell surfaces: Availability of receptors for concanavalin A and wheat germ agglutination, Science 171:905.PubMedCrossRefGoogle Scholar
  42. Nicois, B. W., and Safford, R., 1973, Conversion of lipids to fatty alcohols and lysolipids by NaBH4, Chem. Phys. Lipids 11:222.CrossRefGoogle Scholar
  43. Nicolson, G., and Blaustein, J., 1972, Interaction of Ricinus communis agglutinin with normal and tumor cell surfaces, Biochim. Biophys. Acta 266:543.PubMedCrossRefGoogle Scholar
  44. Nicolson, G., and Singer, S. J., 1971, Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: Application to saccharides bound to cell membranes, Proc. Natl. Acad. Sci. U.S.A. 68:942.PubMedCrossRefGoogle Scholar
  45. Nicolson, G., and Yanagimachi, R., 1974, Mobility and the restriction of mobility of plasma membrane lectin-binding components, Science 184:1294.PubMedCrossRefGoogle Scholar
  46. Phillips, D. R., and Morrison, M., 1970, The arrangement of proteins in human erythrocyte membrane, Biochem. Biophys. Res. Commun. 40:284.PubMedCrossRefGoogle Scholar
  47. Pinto da Silva, P., and Branton, D., 1970, Membrane splitting in freeze-etching: Covalently bound ferritin as a membrane marker, J. Cell Biol. 45:598.PubMedCrossRefGoogle Scholar
  48. Renkonen, O., Gahmberg, C. G., Simons, K., and Kaariainen, L., 1970, Enrichment of gangliosides in plasma membranes of hamster kidney fibroblasts, Acta Chem. Scand. 24:733.PubMedCrossRefGoogle Scholar
  49. Rice, R. H., and Means, G. E., 1971, Radioactive labeling of proteins in vitro, J. Biol. Chem. 246:831.Google Scholar
  50. Rifkin, D. B., Compans, R. W., and Reich, E., 1972, A specific labeling procedure for proteins on the outer surface of membranes, J. Biol. Chem. 247:6432.PubMedGoogle Scholar
  51. Robbins, P. W., and Macpherson, I., 1971, Control of glycolipid synthesis in a cultured hamster cell line, Nature (London) 229:569.CrossRefGoogle Scholar
  52. Robins, S. P., and Bailey, A. J., 1972, Age-related changes in collagen: The identification of reducible lysine-carbohydrate condensation products, Biochem. Biophys. Res. Commun. 48:76.PubMedCrossRefGoogle Scholar
  53. Roseman, S., 1971, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion, Chem. Phys. Lipids 5:270.CrossRefGoogle Scholar
  54. Roth, S., and White, D., 1972, Intercellular contact and cell surface galactosyl transferase activity, Proc. Natl. Acad. Sci. U.S.A. 69:485.PubMedCrossRefGoogle Scholar
  55. Saito, T., and Hakomori, S., 1971, Quantitative isolation of total glycosphingolipids from animal cells, J. Lipid Res. 12:257.PubMedGoogle Scholar
  56. Sakiyama, H., and Robbins, P. W., 1973, The effect of dibutyryl adenosine 3′:5′-cyclic monophosphate on the synthesis of glycolipids by normal and transformed NIL cells, Arch. Biochem. Biophys. 154:407.PubMedCrossRefGoogle Scholar
  57. Sakiyama, H., Gross, S. K., and Robbins, P. W., 1972, Glycolipid synthesis in normal and virus-transformed hamster cell lines, Proc. Natl. Acad. Sci. U.S.A. 69:782.CrossRefGoogle Scholar
  58. Singer, S. J., 1974, The molecular organization of membranes, in: Annual Review of Biochemistry (F. Fox, ed.), p. 866, Annual Reviews, Inc., Palo Alto, Calif.Google Scholar
  59. Steck, T. L., 1972, The organization of proteins in human erythrocyte membranes, in: Membrane Research (C. Fox, ed.), pp. 71–93, Academic Press, New York.Google Scholar
  60. Steck, T. L., and Dawson, G., 1974, Topological distribution of complex carbohydrates of the erythrocyte membrane, J. Biol. Chem. 249:2135.PubMedGoogle Scholar
  61. Steiner, S., Melnik, J., Kit, S., and Somers, K., 1974, Fucosylglycolipids in cells transformed by a temperature-sensitive mutant of murine sarcoma virus, Nature (London) 248:682.CrossRefGoogle Scholar
  62. Suzuki, Y., and Suzuki, K., 1972, Specific radioactive labeling of terminal N-acetylgalactosamine of glycosphingolipids by the galactose oxidase method-sodium borohydride method, J. Lipid Res. 13:687.PubMedGoogle Scholar
  63. van Beek, W. P., Smets, L. A., and Emmelot, P., 1973, Increased sialic acid density in surface glycoprotein of transformed and malignant cells, Cancer Res. 33:2913.PubMedGoogle Scholar
  64. Watkins, W. M., 1966, Blood group substances, Science 152:172.PubMedCrossRefGoogle Scholar
  65. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis, J. Biol. Chem. 244:4406.PubMedGoogle Scholar
  66. Weinstein, D. B., Warren, L., Marsh, J. B., and Glick, M. C., 1967, Glycolipids of L-cell membrane, Fed. Proc. 28:3654.Google Scholar
  67. Wu, H., Meezan, E., Black, P. H., and Robbins, P. W., 1969, Comparative studies on the carbohydrate-containing membrane components of normal and virus transformed mouse fibroblasts. II, Biochemistry 8:2518.PubMedCrossRefGoogle Scholar
  68. Yang, H.-J., and Hakomori, S., 1971, A sphingolipid having a novel type of ceramide and lacto-N-fucopentaose III, J. Biol. Chem. 246:1192.PubMedGoogle Scholar
  69. Yogeeswaran, G., Wherrett, J. R., Chatterjee, S., and Murray, R. K., 1970, Gangliosides of cultured mouse cells: Partial characterization and determination of 14C glucosamine incorporation, J. Biol. Chem. 245:6718.PubMedGoogle Scholar
  70. Yogeeswaran, G., Sheinin, R., Wherrett, J., and Murray, R. K., 1972, Studies on the glycosphingolipids of normal and virally transformed 3T3 mouse fibroblasts, J. Biol. Chem. 247:5146.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Carl G. Gahmberg
    • 1
  • Sen-itiroh Hakomori
    • 2
  1. 1.Departments of Pathobiology and MicrobiologyUniversity of WashingtonSeattleUSA
  2. 2.The Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations