Quantitative Fractography

  • Ervin E. Underwood


The goal of quantitative fractography is to express the features and important characteristics of a fracture surface in terms of true surface areas, lengths, sizes, numbers, shapes, orientations, and locations, as well as distributions of these quantities. Modern quantitative image analysis systems play an important part in furthering these objectives, not only to speed up the measurement process but also to perform operations that would not be feasible otherwise.


Fracture Surface Angular Distribution Projection Plane Roughness Parameter Test Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    Recent sessions include the following: November, 1979. Williamsburg, VA, ASTM. Fractography and Materials Science.Google Scholar
  2. 1b.
    October, 1980. Pittsburgh, PA. AIME-TMS Fall Meeting. Session on Quantitative Fractography.Google Scholar
  3. 1c.
    June, 1981. Ljubljana, Yugoslavia. 3d European Symp. on Ste-reology. Session entitled “Quantification of Nonplanar Surfaces.”Google Scholar
  4. 1d.
    September, 1982. Leoben, Austria. 4th Europ. Conf. on Fracture. Fracture and the Role of Microstructure. Google Scholar
  5. 1e.
    December, 1983. Gainesville, FL. 6th Int. Congr. for Stereology. Session entitled “Fractures and Other Nonplanar Surfaces.”Google Scholar
  6. 1f.
    July, 1984. Philadelphia, PA. 17th Ann. Meeting I.M.S. Session entitled “Fractography, Failure Analysis and Microstructural Studies.”Google Scholar
  7. 2.
    El-Soudani, S. M. Profilometric Analysis of Fractures. Metallography 11:247–336(1978).Google Scholar
  8. 3.
    Coster, M., and Chermant, J. L. Recent developments in quantitative fractography. Int. Metals Reviews 28, No. 4:228–250 (1983).CrossRefGoogle Scholar
  9. 4.
    Wright, K., and Karlsson, B. Topographic quantification of nonplanar localized surfaces. J. Micros. 130:37–51 (1983).CrossRefGoogle Scholar
  10. 5.
    Exner, H. E., and Fripan, M. Quantitative assessment of three-dimensional roughness, anisotropy, and angular distributions of fracture surfaces by stereometry. J. Micros. 139, Pt. 2:161–178 (1985).CrossRefGoogle Scholar
  11. 6.
    Underwood, E. E., and Starke, E. A., Jr. Quantitative stereological methods for analyzing important microstructural features in fatigue of metals and alloys. In Fatigue Mechanisms, ed. Fong, J. T. ASTM STP 675:633–682 (1979).CrossRefGoogle Scholar
  12. 7.
    Underwood, E. E., and Chakrabortty, S. B. Quantitative fractography of a fatigued Ti-28V alloy. In Fractography and Materials Sci ence, eds. Gilbertson, L. N., and Zipp, R. D. ASTM STP 733:337–354 (1981).CrossRefGoogle Scholar
  13. 8.
    Underwood, E. E., and Banerji, K. Statistical analysis of facet characteristics in computer simulated fracture surface. Proc. 6th Int. Congr. Stereology, Gainesville, Florida. Acta Stereologica, ed. Kalis-nik, M. Ljubljana, Yugoslavia:75–80 (1983).Google Scholar
  14. 9.
    Banerji, K., and Underwood, E. E. On estimating the fracture surface area of Al-4% Cu alloys. In Microstructural Science, eds. Shiels, S. A.; Bagnall, C; Witkowski, R. E.; and Vander Voort, G. F. 13:537–551 (1985).Google Scholar
  15. 10.
    Banerji, K., and Underwood, E. E. Fracture profile analysis of heat treated 4340 steel. Proc. 6th Int. Conf. on Fracture. New Delhi, India, 1984. In Advances in Fracture Research, eds. Valluri, S. R.; Taplin, D. M.; Rao, P. R.; Knott, J. F.; and Dubey, R. 2:1371–1378 (1984).Google Scholar
  16. 11.
    Brandis, E. K. Comparison of height and depth measurements with the SEM and TEM using a shadow casting technique. Scan. Electr. Micros. 1:241 (1972).Google Scholar
  17. 12.
    Gifkins, R. C. Optical Microscopy of Metals. London: Pitman, 1970.Google Scholar
  18. 13.
    Zapffe, C. A., and Moore, G. A. A micrographic study of the cleavage of hydrogenized ferrite. Trans. AIME 154:335–359 (1943).Google Scholar
  19. 14.
    Beachem, C. D. Microscopic fracture processes. In Fracture, vol. 1, ed. Liebowitz, H. New York: Academic Press, 1969, pp. 243–349.Google Scholar
  20. 15.
    Broek, D. Some contributions of electron fractography to the theory of fracture. Int. Metall. Reviews 19:135–182 (1974).CrossRefGoogle Scholar
  21. 16.
    Broek, D. A study on ductile fracture. Nat. Lucht. Ruimteraartlab. NLR (TR71021):98–108 (1971).Google Scholar
  22. 17.
    Underwood, E. E. Quantitative Stereology. Reading, MA: Addison-Wesley, 1970.Google Scholar
  23. 18.
    Banerji, K., and Underwood, E. E. Quantitative analysis of fracto-graphic features in a 4340 steel. Proc. 6th Int. Congr. Stereology. Gainesville, Florida. Acta Stereologica, ed. Kalisnik, M. Ljubljana, Yugoslavia:65–70 (1983).Google Scholar
  24. 19.
    Scriven, R. A., and Williams, H. D. The derivation of angular distributions of planes by sectioning methods. Trans. AIME 233:1593–1602 (1965).Google Scholar
  25. 20.
    Morton, V. M. The determination of angular distributions of planes in space. Proc. Roy. Soc. A302:51–68 (1967).Google Scholar
  26. 21.
    Hilliard, J. E. Specification and measurement of microstructural anisotropy. Trans. AIME 224:1201–1211 (1962).Google Scholar
  27. 22.
    Goldstein, J. I.; Newbury, D. E.; Echlin, P.; Joy, D. C; Fiori, C; and Lifshin, E. Scanning Electron Microscopy and X-Ray Microanalysis. New York: Plenum Press, 1981. (See pp. 143–146.)CrossRefGoogle Scholar
  28. 23.
    Hilliard, J. E. Quantitative analysis of scanning electron micrographs. J. Micros. 95, Pt. 1:45–58 (1972).CrossRefGoogle Scholar
  29. 24.
    Boyde, A. Quantitative photogrammetric analysis and quantitative stereoscopic analysis of SEM images. J. Micros. 98, Pt. 3:452–471 (1973).CrossRefGoogle Scholar
  30. 25.
    Howell, P. G. T. Stereometry as an aid to stereological analysis. J. Micros. 118, Pt. 2:217–220 (1980).CrossRefGoogle Scholar
  31. 26.
    Eisenhart, L. P. Coordinate Geometry. New York: Dover Publ., 1960.Google Scholar
  32. 27.
    Bauer, B., and Haller, A. Determining the three dimensional geometry of fracture surfaces. Pract. Metallog. 18:327–341 (1981).Google Scholar
  33. 28.
    Bauer, B.; Fripan, M.; and Smolej, V. Three dimensional fractogra-phy. Proc. 4th Europ. Conf. on Fracture. Leoben, Austria. Fracture and the Role of Microstructure, eds. Maurer, K. L., and Matzer, F. E. 591–598 (1982).Google Scholar
  34. 29.
    Bresnahan, K. Personal communication (1984).Google Scholar
  35. 30.
    Underwood, E. E. The Stereology of Projected Images. J. Micros. 95, Pt. 1:25–44 (1972).CrossRefGoogle Scholar
  36. 31.
    Pickens, J. R., and Gurland, J. Metallographic characterization of fracture surface profiles on sectioning planes. Proc. 4th Int. Congr. Stereology, eds. Underwood, E. E.; de Wit, R.; and Moore, G. A. NBS Spec. Publ. 431, Gaithersburg, MD: 269–272 (1976).Google Scholar
  37. 32.
    Shieh, W. T. The relation of microstructure and fracture properties of electron beam melted, modified SAE 4620 steels. Met. Trans. 5:1069–1085 (1974).CrossRefGoogle Scholar
  38. 33.
    Shechtman, D. Fracture-microstructure observations in the SEM. Met. Trans. 7A:151 (1976).Google Scholar
  39. 34.
    Kerr, W. R.; Eylon, D.; and Hall, J. A. On the correlation of specific fracture surface and metallographic features by precision sectioning in titanium alloys. Met. Trans. 7A: 1477–1480 (1976).Google Scholar
  40. 35.
    Almond, E. A.; King, J. T.; and Embury, J. D. Interpretation of SEM fracture surface detail using a sectioning technique. Metallography 3:379–382 (1970).CrossRefGoogle Scholar
  41. 36.
    Passoja, D. E., and Hill, D. C. Comparison of inclusion distributions on fracture surfaces and in the bulk of carbon-manganese weld- ments. In Fractography-Microscopic Cracking Processes, eds. Bea-chem, C. D. and Warke, W. R. ASTM STP 600:30–46 (1976).CrossRefGoogle Scholar
  42. 37.
    Van Stone, R. H., and Cox, T. B. Use of fractography and sectioning techniques to study fracture mechanisms. In Fractography-Microscopic Cracking Processes, eds. Beachem, C. D., and Warke, W. R. ASTM STP 600:5–29 (1976).CrossRefGoogle Scholar
  43. 38.
    Chestnutt, J. C, and Spurling, R. A. Fracture topography-micro-structure correlations in the SEM. Met. Trans. 8A:216 (1977).Google Scholar
  44. 39a.
    Vander Voort, G. F. Metallography: Principles and Practice. New York: McGraw-Hill Book Co., 1984, pp. 86–90Google Scholar
  45. 39b.
    Vander Voort, G. F. Metallography: Principles and Practice. New York: McGraw-Hill Book Co., 1984, pp. 538–540.Google Scholar
  46. 40.
    Gray, G. T., III; Williams, J. G.; and Thompson, A. W. Roughness-induced crack closure: An explanation for microstructurally sensitive fatigue crack growth. Met. Trans. 14:421–433 (1983).CrossRefGoogle Scholar
  47. 4L.
    Swift, J. A. Measuring surface variations with the SEM using lines of evaporated metal. J. Phys. E: Sci. Instrum. 9:803 (1976).CrossRefGoogle Scholar
  48. 42.
    Wang, R.: Bauer, B.; and Mughrabi, H. The study of surface roughness profiles of fatigued metals by scanning electron microscopy. Z. Metallk. 73:30–34 (1982).Google Scholar
  49. 43.
    Underwood, E. E. Practical solutions to stereological problems. Practical Applications of Quantitative Metallography. eds. McCall, J. L., and Steele, J. H. ASTM STP 839:160–179 (1984).CrossRefGoogle Scholar
  50. 44.
    Behrens, E. W. Personal communication (1977).Google Scholar
  51. 45.
    Mandelbrot, B. B. Fractals: Form, Chance and Dimension. San Francisco: W. H. Freeman and Co., 1977.Google Scholar
  52. 46.
    Underwood, E. E., and Banerji, K. Unpublished research at Georgia Inst, of Techn., Atlanta, GA. (1984).Google Scholar
  53. 47.
    Underwood, E. E., and Underwood, E. S. Quantitative fractography by computer simulation. Proc. 3d Eur. Symp. for Stereology. Ljubljana, Yugoslavia. Acta Stereologica, ed. Kalisnik, M. 2d Part: 89–101 (1982).Google Scholar
  54. 48.
    Passoja, D. E., and Amborski, D. J. Fracture profile analysis by Fourier transform methods. Microstructural Science, eds. Bennett, J. E.; Cornwell, L. R.; and McCall, J. L. New York: Elsevier, 1978, pp. 143–158.Google Scholar
  55. 49.
    Krasowsky, A. J. and Stepanenko, V. A. A quantitative stereoscopic fractographic study of the mechanism of fatigue crack propagation in nickel. Int. J. of Fracture 15, No. 3:203–215 (1979).Google Scholar
  56. 50.
    Thompson, A. W., and Ashby, M. F. Fracture surface micro-roughness. Scripta Met. 18:127–130 (1984).CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold Company Inc. 1986

Authors and Affiliations

  • Ervin E. Underwood
    • 1
  1. 1.School of Materials EngineeringGeorgia Institute of TechnologyUSA

Personalised recommendations