Potentiostatic Etching

  • E. E. Stansbury


Potentiostatic etching is the selective corrosion of one or more morphological features of a microstructure resulting from the metal to be etched being held in a suitable etching electrolyte at a controlled potential. Independent control of potential is accomplished by potentiostats. These are instruments capable of holding the potential of a metal to prescribed values relative to a reference electrode placed in the environment solution. The selected potential determines if dissolution can occur. Measuring the current density, moreover, can establish the dependence of the etching or corrosion rate on the potential. In alloys, the etching rate dependence on the potential may differ significantly for different phases and other microstructural details such as grain boundaries and etch pits. Thus, once a correlation has been established between potential, environment, and selectivity of attack on micro-constituents, potentiostatic etching becomes an additional tool for revealing alloy morphology.


Dissolution Rate Polarization Curve Passive Film Nodular Cast Iron Cathodic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edeleanu, M. A. The potentiostat as a metallographic tool. J. Iron Steel Inst, London 185:482–87 (1957).Google Scholar
  2. 2.
    Cihal, V., and Prazak, M. Corrosion and metallographic study of stainless steels using potentiostat techniques. J. Iron Steel Inst., London 193:360–367 (1959).Google Scholar
  3. 3.
    Lichtenegger, P.; Kulmburg, A.; and Bloch, R. Betrag zum potentiostatischen Atzen von Stahl (A contribution to the potentiostatic etching of steel). Prakt. Metallogr. 6:535–539 (1969).Google Scholar
  4. 4.
    Jeglitsch, F. Ober die Anwendung elektrolytisch-potentiostatischer Atzverfaheren bei Aluminiumlegierungen. Aluminium 45:45–49 (1969).Google Scholar
  5. 5.
    Grutzner, G., and Schuller, Η. J. Untersuchungen über das elektrolytisch-potentiostatische Atzen von nichtrostenden Stahlen in 10 Ν NaOH unter Anwendung eines Coulometers. Werkst. Korros. 20:183–194 (1969).CrossRefGoogle Scholar
  6. 6.
    Greene, Ν. D., and Wilde, B. E. Variable corrosion resistance of 18Cr-8Ni stainless steels: Influence of environmental and metallurgical factors. Corrosion 26:533–538 (1970).Google Scholar
  7. 7.
    Kurosawa, F.; Taguchi, I.; and Matsumoto, R. Observation of precipitates and metallographic grain orientation in steel by a nonaqueous electrolyte-potentiostatic etching method. Nippon Kinzoku Gak-kaishi 43:1068–77 (1979).Google Scholar
  8. 8.
    Prazak, M; Cihal, V.; and Holinka, M. Uber die Differenzierung der Strukturphasen beim metallographischen Atzen. I. Elektrolytisches Atzen mit festgelegtem Potential. Collection Czechoslov. Chem. Commun. 24:9–15 (1959).Google Scholar
  9. 9.
    Greene, N. D., and Teterin, G. A. Development of brass etchants by electrochemical techniques. Corros. Sci. 12:57–63 (1972).CrossRefGoogle Scholar
  10. 10.
    Greene, N. D.; Rudaw, P. S.; and Lee, L. Principles of metallographic etching. Corros. Sci. 6:371–379 (1966).CrossRefGoogle Scholar
  11. 11.
    Vander Voort, G. F. Metallography: Principles and Practice. New York: McGraw-Hill Book Co., 1984.Google Scholar
  12. 12.
    Richardson, J. H. Optical Microscopy for the Materials Sciences. New York: Marcel Deker, Inc., 1971.Google Scholar
  13. 13.
    Mauvais, C. J.; Latanision, R. M.; and Ruff, A. W. On the anisot-ropy observed during the passivation of nickel monocrystals. J. Electrochem. Soc. 117:902–903 (1970).CrossRefGoogle Scholar
  14. 14.
    Sato, N. The passivity of metals and passivating films in passivity of metals. In Passivity of Metals, pp. 29–58. Princeton, NJ: The Electrochemical Society, 1980.Google Scholar
  15. 15.
    Mueller, W. A. Derivation of anodic dissolution curve of alloys from those of metallic components. Corrosion 18:73t-79t (1962).Google Scholar
  16. 16.
    Steigerwald, R. F., and Greene, N. D. The anodic dissolution of binary alloys. J. Electrochem. Soc. 109:1026–1034 (1962).CrossRefGoogle Scholar
  17. 17.
    Annual Book of ASTM Standards. Standard A262–1981. Philadelphia: Am. Soc. for Testing and Mat., 1984.Google Scholar
  18. 18.
    Majidi, A. P., and Streicher, M. A. Potentiodynamic reactivation method for detecting sensitization in AISI 304 and 304L stainless steels. Corrosion 40:393–408 (1984).CrossRefGoogle Scholar
  19. 19.
    Szklarska-Smialowska, Z. Effect of the ratio of chloride/sulphate in solution on the pitting corrosion of nickel. Corros. Sci. 11:209–221 (1971).CrossRefGoogle Scholar
  20. 20.
    Hodge, F. G., and Wilde, B. E. Effect of chloride ion on the anodic dissolution kinetics of chromium-nickel binary alloys. Corrosion 26:146–150 (1970).Google Scholar
  21. 21.
    Schwabe, K., and Schmidt, W. Der Einfluss des Wasser auf die Passivierbarkeit von Nickel in schwefelsaurer Losung. Corros. Sci. 10:143–155 (1970).CrossRefGoogle Scholar
  22. 22.
    Ludering, H. Beitrag zum elektrolytisch-potentiostatischen Atzen1 mit besonderer Berucksichtigung der coulometrischen Bestimmung der Atziefe. Arch. Eisenhuttenwes. 30:605–611 (1959).Google Scholar
  23. 23.
    Ludering, H. Das elektrolytisch-potentiostatische Atzen. Radex-Rundschau 3/4:650–656 (1967).Google Scholar
  24. 24.
    Herbsieb, G., and Schwaab, P. Fundamentals of the potentiostatic development of structures using high-alloy steels as an example. Prakt. Metallogr. 15:213–223 (1978).Google Scholar
  25. 25.
    Beraha, E., and Shpigler, B. Color Metallography. Metals Park, Ohio: American Society for Metals, 1977.Google Scholar
  26. 26.
    Gahm, H., and Jeglitsch, F. Color methods and their applications in metallography. Microstruct. Sci. 9:65–80 (1981).Google Scholar
  27. 27.
    Modin, Η., and Modin, S. Metallurgical Microscopy. London: But-terworths, 1973.Google Scholar
  28. 28.
    Phillips, V. A. Modern Metallographic Techniques and Their Applications. New York: Wiley-Interscience, 1971.Google Scholar
  29. 29.
    Grutzner, G., and Schuller, H. J. Potentiostatic color etching of stainless steels. Prakt. Metallogr. 6:246–258 (1969).Google Scholar
  30. 30.
    Helbach, P., and Bullock, E. Potentiostatic Etching of Carburized Steels. Petten, Neth.: Comm. Eur. Communities, (Rep) EUR, 1982.Google Scholar
  31. 31.
    Vander Voort, G. F. Tint etching. Metals Progress 127:31–41 (March 1985).Google Scholar
  32. 32.
    Sullivan, C. P.; Jensen, J.: Duvall, D. S.; and Field, T. T. Potentio-statically controlled etching of nickel-aluminum alloys. Trans. Am. Soc. Met. 61:582–591 (1968).Google Scholar
  33. 33.
    Belo, M. C, Berge, P., and Montuelle, J. Metallographie—Attaque selective, a l’aide du potentiostat, des phases en presence dans an acier inoxydable biphase. C. R. Acad. Sc, Paris 7:570–573 (1964).Google Scholar
  34. 34.
    Khaldeyev, G. V.; Knyazeva, V. F.; and Kuznetsov, V. V. Selective potentiostatic etching on dislocations in iron. Zashchita Metallov Korroz 11:729–731 (1974).Google Scholar
  35. 35.
    Roschenbleck, B., and Buss, E. K. Potentiostatisches, differentielles Atzen der Gefugebestandteile in 18/8 Cr-Ni-Stahlen. Werkst. Korros. 4:261–269 (1963).CrossRefGoogle Scholar
  36. 36.
    Tsinman, A. I., Degtyareva, V. K., Neiman, N. S., Kassinskaya, L. L., Kuzub, V. S., and Murashkina, A. A. Exchange of experience determination of tendency in chromium-nickel steel Khl8N10T towards intercrystalline corrosion by potentiostatic etching method. Zashchita Metallov Korroz 6:475–478 (1970).Google Scholar
  37. 37.
    Voeltzel, J.; Henry, G.; Manenc, J.; and Plateau, J. Utilisation du potentiostat electronique pour l’attaque micrographique. Memoires Scientifiques Rev. Metallurg. 62:129–134 (1965).Google Scholar
  38. 38.
    Gooch, T. G., Honeycombe, J., and Walker, P. Potentiostatic study of the corrosion behaviour of austenitic stainless steel weld metal. Br. Corros. J. 6:148–154 (1971).CrossRefGoogle Scholar
  39. 39.
    Langenscheid, G., and Naumann, Κ. Die Unterscheidung von Eisenkarbid und Eisennitriden durch Atzen. Arch. Eisenhuttenwes. 36:505–508 (1965).Google Scholar
  40. 40.
    Naumann, F. K., and Langenscheid, G. Die Unterscheidung von Eisenund Chromkarbiden druch Atzen. Arch. Eisenhuttenwes. 38:463–468 (1967).Google Scholar
  41. 41.
    Schaarwachter, W., Ludering, H., and Naumann, F. K. Die elektrolytische Atzung mehrphasiger Eisen-Chrom-Nickel-Legierungen in Natronlauge. Arch. Eisenhuttenwes. 31:385–391 (1960).Google Scholar
  42. 42.
    Naumann, F. K. Beitrag zum Nachweis der Alpha-Phase und zur Kinetik ihrer Bildung und Auflosung in Eisen-Chrom-und Eisen-Chrom-Nickel-Legierungen. Arch. Eisenhuttenwes. 34:187–194 (1963).Google Scholar
  43. 43.
    Bloch, R., and Lichtenegger, P. Die selektive Darstellung von gefu-gebestandteilen mittels potentiostatischer Atzung (The use of potentiostatic etching to reveal microstructural constituents selectively). Prakt. Metallog. 12:186–193 (1975).Google Scholar
  44. 44.
    Ludering, H. Versuche zum Atzen von Siliziumseigerungen in Eisen-Kohlenstoff-Legierungen. Arch. Eisenhuttenwes. 2:153–159 (1964).Google Scholar
  45. 45.
    Jones, J. D., and Hume-Rothery, W. Constitution of certain austenitic stainless steels, with particular reference to the effect of aluminum. J. Iron Steel Inst, London 203:1–7 (1966).Google Scholar
  46. 46.
    Roschenbleck, B.; Fecht, D.; and Koslowski, W. Potentiostatisch differentielles Atzen von Aluminiumlegierungen (Potentiostatic differential etching of aluminium alloys). Prakt. Metallogr. 18:376–384 (1981).Google Scholar
  47. 47.
    Mance, A. Potentiostatic etching and polishing of copper and its alloys. Metallog. 4:287–296 (1971).CrossRefGoogle Scholar
  48. 48.
    Mance, A.; Perovic, V.; and Mihajlovic, A. Potentiostatic controlled etching and polishing of copper and its alloys. Metallog. 6:123–130 (1973).CrossRefGoogle Scholar
  49. 49.
    Mihajlovic, A., and Mance, A. The potentiostatic method for electrolytic etching of U-Nb Alloys. J. Nucr. Mater. 26:267–272 (1968).CrossRefGoogle Scholar
  50. 50.
    Ludering, Η. Uber das elektrochemische Anatzen verschiedener Gefugebestandteile und von Mischkristallen unterschiedlicher Zusammensetzung. Werkst. Korros. 8:665–668 (1966).CrossRefGoogle Scholar
  51. 51.
    Kurosawa, F.; Taguchi, I.; and Matsumoto, R. Observation and analysis of beta phase in steel using nonaqueous electrolyte-potentiostatic method. Nippon Kinzoku Gakkaishi 45:165–173 (1981).Google Scholar
  52. 52.
    Kurosawa, F.; Taguchi, L; and Matsumoto, R. Studies on observations and analysis by the SPEED method. 5. Nippon Kinzoku Gakkaishi 44:1288–1295 (1980).Google Scholar
  53. 53.
    Kurosawa, F.; Taguchi, I.; Tanino, M.; and Matsumoto, R. Observation and analysis of nitrides in steels using the nonaqueous electrolyte-potentiostatic etching method. Nippon Kinzoku Gakkaishi 45:63–71 (1981).Google Scholar
  54. 54.
    Jeglitsch, F. Siliziumseigerungen in kugelgraphitschem Gusseisen und ihr Nachweis. Microchem. Acta 3:479–493 (1965).Google Scholar
  55. 55.
    Jeglitsch, F. Ober die Anwendung elektrolytisch-potentio-statischer Atzverfahren bei Aluminiumlegierungen. Aluminium 45:45–49 (1969).Google Scholar

Copyright information

© Van Nostrand Reinhold Company Inc. 1986

Authors and Affiliations

  • E. E. Stansbury
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Tennessee-KnoxvilleUSA

Personalised recommendations