Microscopy and the Study of Corrosion

  • W. E. White


The study of corrosion, whether in research or in the analyses of corrosion-related engineering problems, is always challenging and often difficult. Frequently, it only takes small environmental changes to precipitate catastrophic electrochemical or oxidation reactions leading to early systems or component failures.


Corrosion Product Intergranular Corrosion Crevice Corrosion Cyclic Polarization AISI Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Uhlig, H. H., ed. Corrosion Handbook. New York: John Wiley and Sons, 1948.Google Scholar
  2. 2.
    Brasunas, A. de S., ed. Basic Corrosion. National Assoc. of Corr. Eng., 1978.Google Scholar
  3. 3.
    Shreir, L. L. Corrosion, vol. 1. London: Newnes-Butterworth, 1976.Google Scholar
  4. 4.
    Bockris, J. O’M., and Reddy, A. K. N. Modern Electrochemistry, vols. 1 and 2. New York: Plenum Press, 1977.Google Scholar
  5. 5.
    Pourbaix, M. Lectures on Electrochemical Corrosion. New York: Plenum Press, 1973.CrossRefGoogle Scholar
  6. 6.
    Shreir, L. L., Corrosion, vol. 2. London: Newnes-Butterworth, 1976.Google Scholar
  7. 7.
    Crow, D. R. Principles and Applications of Electrochemistry, London: Chapman and Hall, 1974.Google Scholar
  8. 8.
    Burns, D. S. Laboratory test for evaluating alloys for H2S service. In H 2 S Corrosion in Oil and Gas ProductionA Compilation of Classic Papers, edited by R. N. Tuttle and R. D. Kane, pp. 275–282. NACE, 1981.Google Scholar
  9. 9.
    Briant, C. L., and S. K. Banerji. Intergranular failure in steel: The role of grain boundary composition. Int. Met. Rev. 23, No. 4:164–199 (1978).CrossRefGoogle Scholar
  10. 10.
    Bernstein, I. M., and Thompson, A. W. Effect of metallurgical variables on environmental fracture of steels. Int. Met. Rev. 21, No. 4:269–287 (1976).Google Scholar
  11. 11.
    Hoeppner, D. W. Environmental effects in fretting fatigue. In Fretting Fatigue, edited by R. B. Waterhouse, pp. 143–158. Essex, England: Applied Science Publishers, 1981.Google Scholar
  12. 12.
    Forsyth, P. J. E. Occurrence of fretting fatigue failures in practice. Ibid, pp. 99–126.Google Scholar
  13. 13.
    Guttmann, V., and Mertz, M., eds. Corrosion and Mechanical Stress at High Temperatures. London: Applied Science Publishers, Ltd., 1981.Google Scholar
  14. 14.
    Andrews, K. W.; Dyson, D. J.; and Keown, S. R. Interpretation of Electron Diffraction Patterns, London: Hilgers and Watts Ltd., 1967.Google Scholar
  15. 15.
    Goldstein, J. I., and Yakowitz, H., eds. Practical Scanning Electron Microscopy. New York: Plenium Press, 1977.Google Scholar
  16. 16.
    Loretto, M. H., and Smallman, R. E. Defect Analysis in Electron Microscopy. London: Chapman and Hall, 1975.Google Scholar
  17. 17.
    Louthan, Jr., M. R., et al. Hydrogen embrittlement in metals. In Hydrogen Damage, edited by C. D. Beachem, pp. 289–300. ASM, 1977.Google Scholar
  18. 18.
    Nielson, N. A. Observations and thoughts on stress corrosion mechanisms. Ibid, pp. 219–254.Google Scholar
  19. 19.
    Scheidl, H. Transmission electron microscope and microfractographic studies on steel X20 Cr13 for turbine blades. Praktische Metallographie 9:503–516 (1973).Google Scholar
  20. 20.
    Effertz, P. H.; Schuller, H. J.; and Wiume, D. High temperature corrosion damage. Praktische Metallographie 9:409–426 (1976).Google Scholar
  21. 21.
    Colangelo, V. Metallographic analysis of corrosion failures. In Metallography in Failure Analysis, edited by J. L. McCall and P. M. French. New York: Plenium Press, 1977.Google Scholar
  22. 22.
    Northwood, D. O.; White, W. E.; and Vander Voort, G. F., eds. Corrosion, Microstructure and Metallography. Microstructural Science, vol. 12. ASM, 1985.Google Scholar
  23. 23.
    Miley, D. V., and Smolik, G. R. SEM examinations of oxidation characteristics of alloy 800H. In Microstructural Science, vol. 10, edited by W. E. White, J. H. Richardson, and J. L. McCall, pp. 43–50. New York: American Elsevier 1982.Google Scholar
  24. 24.
    Ganesan, P.; Mehrotra, P. K.; and Sargent, G. A. A microstructural study of the erosion-corrosion behavior of type 304 and 310 stainless steels. Ibid, pp. 91–102.Google Scholar
  25. 25.
    Jonard-Guerin, F., and Frade, G. Study of the dezincification of the Al-Zn alloys with 11% Zn by transmission electron microscopy. Metallography 8:489–508 (1975).CrossRefGoogle Scholar
  26. 26.
    Agaruala, V. S., and Murty, Y. V. A controlled-potential corrosion study of Al-4.5 cu alloy in 3.5% NaCl solution. Metallography 10:451–461 (1977).CrossRefGoogle Scholar
  27. 27.
    Shei, S. A., and Kim, C. D. A microstructural study of the sulfide stress cracking resistance of a Cr-Mo-V-B steel. Corrosion 41:12–18 (1985).CrossRefGoogle Scholar
  28. 28.
    Jeffrey, Y., and Mui, P. Corrosion mechanisms of metals and alloys in the silicon-hydrogen-chlorosilane system. Corrosion 41:63–68 (1985).CrossRefGoogle Scholar
  29. 29.
    Roques, Y., et al. Pitting of Zircaloy-4 in chloride containing aqueous methanolic solution. Corrosion 40:561–566 (1984).CrossRefGoogle Scholar
  30. 30.
    Moriya, M., and Ives, M. B. The structure of anodic films formed on nickel and nickel-13 w/o molybdenum alloy in pH 2.8 sodium sulfate solution. Corrosion 40:62–72 (1984).CrossRefGoogle Scholar
  31. 31.
    Fontana, M. G., and Grenne, N. D. Corrosion Engineering. New York: McGraw-Hill, 1967.Google Scholar
  32. 32.
    Edeleneau, C. The potentiostat as a metallographic tool. J.I.S.I. 185:482–488 (1957).Google Scholar
  33. 33.
    Atlas of Microstructures of Industrial Alloys. Metals Handbook, 8th ed., vol. 7. American Society for Metals, 1972.Google Scholar
  34. 34.
    Metallography, Structures and Phase Diagrams, Metals Handbook, 8th ed., vol. 8. American Society for Metals, 1973.Google Scholar
  35. 35.
    Fractography and Atlas of Fractographs, Metals Handbook, 8th ed., vol. 9. American Society for Metals, 1974.Google Scholar
  36. 36.
    Easterly, K. E. Recent Developments in quantitative electron microscopy. Int. Met. Rev. 22:1–24 (1977).CrossRefGoogle Scholar
  37. 37.
    Beeston, B. E. P.; Horne, R. W.; and Markham, R. Part II: Electron diffraction and optical diffraction techniques. In Practical Methods in Electron Microscopy, edited by A. M. Glauert. New York: American Elsevier, 1972.Google Scholar
  38. 38.
    Metallographic Preparation for Corrosion Studies, Metal Digest, vol. 22, No. 2. Lake Bluff, IL: Buehler Ltd., 1983.Google Scholar
  39. 39.
    Metallographic Sample Preparation, Metal Digest, vol. 20, No. 2. Lake Bluff, IL: Buehler Ltd., 1981.Google Scholar
  40. 40.
    Goodhew, P. J. Specimen preparation in materials science. In Practical Methods in Electron Microscopy, edited by A. M. Glauert. New York: American Elsevier, 1972.Google Scholar
  41. 41.
    Cihal, V. and Prazak, M. Corrosion and metallographic study of stainless steels using potentiostatic techniques. J.I.S.I. 193:360–367 (1959).Google Scholar
  42. 42.
    ASTM Annual Standard G3–74, Part 10: Conventions applicable to electrochemical measurements in corrosion testing. American Society for Testing and Materials, Philadelphia, PA (1980).Google Scholar
  43. 43.
    ASTM Annual Standard G5–78, Part 10: Standard reference method for making potentiostatic and potentiodynamic anodic polarization measurements. American Society for Testing and Materials, Philadelphia, PA (1980).Google Scholar
  44. 44.
    ASTM Annual Standard G61–78, Part 10: Practice for conducting cyclic potentiodynamic polarization measurements for localized corrosion. American Society for Testing and Materials, Philadelphia, PA (1980).Google Scholar
  45. 45.
    King, R. J. Corrosion of Steel Weldments in Permafrost. Ph.D. Thesis, The University of Calgary, Calgary, Canada, 1983.Google Scholar
  46. 46.
    White, W. E.; King, R. J.; and Coulson, K. E. W. Preliminary observations of corrosion on carbon steel in permafrost. Corrosion 39:346–353 (1983).CrossRefGoogle Scholar
  47. 47.
    Ogundele, G. I. Corrosion of metallic orthopaedic implants. M.Sc. Thesis, The University of Calgary, Calgary, Canada 1980.Google Scholar
  48. 48.
    Ogundele, G. I., and W. E. White, Polarization studies on surgical grade stainless steel in Hank’s physiological solution. In Corrosion and Degradation of Implant Materials, pp. 233–248. Philadelphia: ASTM STP 859, 1985.Google Scholar
  49. 49.
    Baboian, R., and Haynes, G. S. Cyclic polarization measurements, experimental procedure and evaluation of test data. In Electrochemical Corrosion Testing, pp. 274–282. Philadelphia: ASTM STP 727, 1981.CrossRefGoogle Scholar
  50. 50.
    Sarkar, N. K. Application of potentiokinetic hysteresis technique to characterize the chloride corrosion in high copper dental amalgams. Ibid, pp. 283–289.Google Scholar
  51. 51.
    White, W. E., and King, R. J. Pitting corrosion of carbon steel weldments in permafrost. In Microstructural Science, vol. 11, pp. 435–456. New York: American Elsevier, 1982.Google Scholar
  52. 52.
    White, W. E., and Le May, I. Optical and electron fractographic studies of fracture in orthopaedic implants. In Microstructural Science, vol. 3, Part B, pp. 911–930. New York: American Elsevier, 1975.Google Scholar
  53. 53.
    White, W. E.; Postlethwaite, J.; and Le May, I. On the fracture of orthopaedic implants. In Microstructural Science, vol. 4, pp. 145–158. New York: American Elsevier, 1976.Google Scholar

Copyright information

© Van Nostrand Reinhold Company Inc. 1986

Authors and Affiliations

  • W. E. White
    • 1
  1. 1.Petro-Canada Inc.Canada

Personalised recommendations