Skip to main content

Microscopy and Titanium Alloy Development

  • Chapter
Applied Metallography

Abstract

Although the Kroll process for refining titanium was invented in 1937, significant production in the U.S. did not begin until 1948. It was the advent of the aircraft jet engine that stimulated growth of the titanium industry, primarily because of titanium’s excellent strength-to-weight ratio. A wide variety of alloy compositions evolved for various aircraft applications, not only for engines, but for airframe structures as well.1 As the demand for these applications ebbed and flowed in the years following 1948, the industry began to cultivate other areas for use. The corrosion resistance of Ti made it a viable replacement for stainless steels in many applications in the chemical processing industry.2 More recently, Ti has been used in various types of prostheses for surgical implant in humans.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaffee, R. I., and Promisel, N. E., eds. The Science, Technology and Application of Titanium. New York: Pergamon Press, Ltd., 1970.

    Google Scholar 

  2. Inomata, S.; Goto, A.; Yano, K.; Tsuchimoto, M.; Shibata, S.; Fujii, T.; Sakurai, T.; and Kanamoto, M. On the explosive bonding and forming of titanium. *Jaffee, R. I., and Promisel, N. E., eds. The Science, Technology and Application of Titanium. New York: Pergamon Press, Ltd., 1970*Ibid., pp. 1065–1080.

    Google Scholar 

  3. Zwicker, U.; Buhler, K.; Muller, R.; Beck, H.; Schmid, H. J; and Ferstl, J. Mechanical properties and tissue reactions of a titanium alloy for implant material. In Titanium ′80 Science and Technology, edited by Kimura, H., and Izumi, O., pp. 505–518. Warrendale, PA: Met. Soc. AIME, 1980.

    Google Scholar 

  4. Ogden, H. R., and Holden, F. C. Metallography of titanium alloys. TML Report No. 103. Columbus OH: Battelle Memorial Inst., 1958.

    Google Scholar 

  5. Frost, P. D.; Parris, W. M.; Hirsch, L. L.; Doig, J. R.; and Schwartz, C. M. Isothermal transformation of titanium-chromium alloys. Trans. ASM 46:231–256 (1954).

    CAS  Google Scholar 

  6. Holden, F. C., and Young, A. D. Electron micrographic study of aging in a beta titanium alloy. Trans. Met. Soc. AIME 212:287–288 (1958).

    CAS  Google Scholar 

  7. Fentiman, W. P.; Goosey, R. E.; Hubbard, R. T. J.; and Smith, M. D. Exploitation of a simple alpha titanium alloy base in the development of alloys of diverse mechanical properties. In The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. 987–999. New York: Pergamon Press, Ltd., 1970.

    Google Scholar 

  8. Zwicker, U., and Katsch, E. Cracking of titanium alloys under stress during oxidation in air. *The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. New York: Pergamon Press, Ltd., 1970*Ibid., pp. 299–306.

    Google Scholar 

  9. Coyne, J. R. The beta forging of titanium alloys. *The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. New York: Pergamon Press, Ltd., 1970*Ibid., pp. 97–110.

    Google Scholar 

  10. Green, T. E., and Minton, C. D. T. The effect of beta processing on properties of titanium alloys. *The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. New York: Pergamon Press, Ltd., 1970*Ibid., pp. 111–119.

    Google Scholar 

  11. Frederick, S. F., and Hanna, W. D. Fracture toughness and deformation of titanium alloys at low temperatures. Met. Trans. 1:347–352 (1970).

    Article  CAS  Google Scholar 

  12. Kennedy, J. Fatigue behavior of solution treated and quenched Ti-6A1–4V. Grumman Res. Dept. Report RE-630. 1981.

    Google Scholar 

  13. Lee, D., and Backofen, W. A. Superplasticity in some titanium and zirconium alloys. Trans. TMS-AIME 239:1034–4040 (1967).

    Google Scholar 

  14. Hall, I. W., and Hammond, C. The relationship between crack propagation characteristics and fracture toughness in alpha+beta alloys, In Titanium Science and Technology, edited by Jaffee, R. I. and Burte, H. M., pp. 1365–1376. New York: Plenum Press, 1973.

    Google Scholar 

  15. Thompson, A. W.; Williams, J. C.; Frandsen, J. D.; and Chesnutt, J. C. The effect of microstructure on fatigue crack propagation rate in Ti-6A1–4V. In Titanium and Titanium Alloys, edited by Williams, J. C., and Belov, A. F., pp. 691–704, New York; Plenum Press, 1982.

    Google Scholar 

  16. Spurling, R. A. Rockwell International Science Center, Thousand Oaks, CA. Unpublished research.

    Google Scholar 

  17. Cortes, F. R. Electrolytic polishing of refractory metals. Metals Progress 88:97–100 (1961).

    Google Scholar 

  18. Rice, L.; Hinesley, C. P.; and Conrad, H. Techniques for optical and electron microscopy of titanium. Metallog. 4:257–268 (1971).

    Article  CAS  Google Scholar 

  19. Blackburn, M. J.; and Williams, J. C. The preparation of thin foils of titanium alloys. Trans. TMS-AIME 239:287–288 (1967).

    CAS  Google Scholar 

  20. Spurling, R. A. A technique for preparing thin foils of Ti and Ti alloys for transmission electron microscopy. Met. Trans. 6A:1660–1661 (1975).

    CAS  Google Scholar 

  21. Spurling, R. A.; Rhodes, C. G.; and Williams, J. C. The microstructure of Ti alloys as influenced by thin foil artifacts. Met. Trans. 5:2597–2600 (1974).

    Article  CAS  Google Scholar 

  22. Rhodes, C. G., and Paton, N. E. Formation characteristics of the alpha/beta interface phase in Ti-6A1–4V. Met. Trans. A 10A:209–216 (1979).

    Article  CAS  Google Scholar 

  23. Banerjee, D., and Williams, J. C. The effect of foil preparation technique on interface phase formation in Ti alloys. Scr. Met. 17:1125–1128 (1983).

    Article  CAS  Google Scholar 

  24. Burgers, W. G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1:561–586 (1934).

    Article  CAS  Google Scholar 

  25. Jaffee, R. I. Metallurgical synthesis. In Titanium Science and Technology, edited by Jaffee, R. I., and Burte, H. M., pp. 1665–1693. New York: Plenum Press, 1973.

    Google Scholar 

  26. Williams, J. C., and Belov, A. F., eds. Titanium and Titanium Alloys. New York: Plenum Press, 1982.

    Google Scholar 

  27. Kimura, H., and Izumi, O., eds. Titanium ′80 Science and Technology. Warrendale, PA: Metallurgical Society of AIME, 1980.

    Google Scholar 

  28. Rosenberg, H. W. Titanium alloying in theory and practice. In The Science, Technology and Applications of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. 851–859. New York; Pergammon Press, Ltd., 1970.

    Google Scholar 

  29. Bohanek, E., and Kessler, H. D. An advanced titanium alloy for service at temperatures in excess of 800°F. In Reactive Metals, vol. 2, edited by Clough, W. R., pp. 23–41. NY: Interscience Publishers, (1959).

    Google Scholar 

  30. Blackburn, M. J. Relationship of microstructure to some mechanical properties of Ti-8Al-1Mo-1V. Trans. ASM 59:694–708 (1966).

    CAS  Google Scholar 

  31. Brown, B. F. ASTM Annual Meeting, *J. Electr. Soc. 114:551–556 (1967)*cited in Ref. 32.

    Article  Google Scholar 

  32. Beck, T. R. Stress corrosion cracking of titanium alloys. J. Electr. Soc. 114:551–556 (1967).

    Article  CAS  Google Scholar 

  33. Jackson, J. D., and Boyd, W. K. Stress corrosion cracking in titanium and titanium alloys. In The Science, Technology and Application of Titanium, edited by Jaffee, R. L, and Promisel, N. E., pp. 267–281. New York: Pergamon Press, Ltd., 1970.

    Google Scholar 

  34. Erdeman, V. J., and Ross, E. W. Long time stability of Ti-679 after creep exposure for times to 15,000 hour. Ibid., pp. *The Science, Technology and Application of Titanium, edited by Jaffee, R. L, and Promisel, N. E., pp. New York: Pergamon Press, Ltd., 1970*829–837.

    Google Scholar 

  35. Rosenberg, H. W. High temperature alloys. In Titanium Science and Technology, edited by Jaffee, R. I., and Burte, H. M., pp. 2127–2140. New York: Plenum Press, 1973.

    Google Scholar 

  36. Paton, N. E., and Mahoney, M. W. Creep of titanium-silicon alloys. Met. Trans. A 7A:1685–1694 (1976).

    Article  CAS  Google Scholar 

  37. Neil, D. F. and Blenkinsop, P. A. Effect of heat treatment on structure and properties of IMI829. In Titanium ′80 Science and Technology, edited by Kimura, A., and Izumi, O., pp. 1287–1297. Warrendale, PA: Metallurgical Society of AIME, 1980.

    Google Scholar 

  38. Blenkinsop, P. A. IMI Titanium Limited, Birmingham, England. Private communication.

    Google Scholar 

  39. Rhodes, C. G.; Paton N. E.; and Mahoney, M. W. Creep properties of Ti-8Al-5Nb-5Zr-0.25Si. In Titanium Science and Technology, edited by Liitjering, G.; Zwicker, U.; and Bunk, W., pp. 2355–2361. Oberursel, W. Germany: Deutsche Gesellschaft für Metallkunde V., 1985.

    Google Scholar 

  40. Klier, E. P., and Feola, N. J. Notch tensile properties of selected titanium alloys. Trans. TMS-AIME 209:1271–1277 (1957).

    CAS  Google Scholar 

  41. Ogden, H. R.; Douglass, R. W.; Holden, F. C.; and Jaffee, R. I. The notch sensitivity of Ti-5Al-2.5Sn, Ti-6A1–4V and Ti-2Fe-2Cr-2Mo titanium alloys. Trans. Met. Soc. AIME 221:1235–1240 (1961).

    CAS  Google Scholar 

  42. Becker, D. W.; Messler, R. W. Jr.; and Baeslack, W. A., III. Titanium welding. In Titanium ′80 Science and Technology, edited by Kimura, A., and Izumi, O., pp. 255–275. Warrendale, PA: Metallurgical Society of AIME, 1980.

    Google Scholar 

  43. Craighead, C. M.; Simmon, O. W.; and Eastwood, L. W. Ternary alloys of titanium. Trans. AIME 188:514–538 (1950).

    CAS  Google Scholar 

  44. Berryman, R. G.; Froes, F. H.; Chesnutt, J. C.; Rhodes, C. G.; Williams, J. C.; and Malone, R. F. High toughness titanium alloy development. Technical Report TFD-74–657, Naval Air Systems Command, Washington, D.C., 1974.

    Google Scholar 

  45. Williams, J. C.; Froes, F. H.; Chesnutt, J. C.; Rhodes, C. G.; and Berryman, R. G. Development of high-fracture toughness titanium alloy. In Toughness and Fracture Behavior of Titanium, STP 651, pp. 64–114. Philadelphia: Am. Soc. for Testing and Materials, 1978.

    Chapter  Google Scholar 

  46. Chesnutt, J. C.; Rhodes, C. G.; and Williams, J. C. Relationship between mechanical properties, microstructure and fracture topography in alpha+beta titanium alloys. In Fractography—Microscopic Cracking Processes, ASTM STP 600, pp. 99–138. Philadelphia: Am. Soc. for Testing and Materials, 1976.

    Google Scholar 

  47. Hamilton, C. H.; Stacher, G. W.; Mills, J. A.; and Li, H. Superplastic forming of titanium structures. AFML-TR-76–62, Wright-Patterson AFB, OH, April 1976.

    Google Scholar 

  48. Edington, J. W. Physical metallurgy of superplasticity. Met. Tech. 3:138–151 (1976).

    Google Scholar 

  49. Wert, J. A., and Paton, N. E. Enhanced superplasticity and strength in modified Ti-6A1–4V alloys. Met. Trans. 14A:2535–2544 (1983).

    CAS  Google Scholar 

  50. Hammond, C. Superplasticity in titanium base alloys. In Superplastic Forming of Structural Alloys, edited by Paton, N. E., and Hamilton, C. H., pp. 131–145. Warrendale, PA: TMS-AIME, 1982.

    Google Scholar 

  51. Blackburn, M. J.; and Smyri, W. H. Stress corrosion and hydrogen embrittlement. In Titanium Science and Technology, edited by Jaffee, R. I., and Burte, H. M., pp. 2577–2609. New York: Plenum Press, 1973.

    Google Scholar 

  52. Kerr, W. R.; Smith, P. R.; Rosenblum, M. E.; Gurney, F. J.; Mahajan, Y. R.; and Bidwell, L. R. Hydrogen as an alloying element in titanium (Hydrovac). In Titanium ′80 Science and Technology, edited by Kimura, A., and Izumi, O., pp. 2477–2846. Warrendale, PA: Metallurgical Society of AIME, 1980.

    Google Scholar 

  53. Molinier, R.; Moulin, J.; and Syre, R. A. A study of the metallurgical characteristics of Ti-6Al-6V-2Sn alloy. In The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. 979–982. New York: Pergamon Press, Ltd., 1970.

    Google Scholar 

  54. McLean, D. Mechanical Properties of Metals: New York: John Wiley & Sons, Inc., 1962.

    Google Scholar 

  55. Petersen, V. C.; Bomberger, H. B.; and Vordahl, M. B. An age hardening titanium alloy. Metal Progress 76:119–122 (1959).

    CAS  Google Scholar 

  56. Hunter, D. B.; and Arnold, S. V. Metallurgical characteristics and structural properties of Ti-8Mo-8V-2Fe-3Al sheet, plate and forgings. In The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. 959–967. New York: Pergamon Press, Ltd., 1970.

    Google Scholar 

  57. Bohanek, E. Deep hardenable titanium alloys for large airframe elements. In Titanium Science and Technology, edited by Jaffee, R. L, and Burte, H. M., pp. 1993–2007. New York: Plenum Press, 1973.

    Google Scholar 

  58. Petersen, V. C.; Froes, F. H.; and Malone, R. F. Metallurgical characteristics and mechanical properties of Beta III, a heat treatable titanium alloy. *Titanium Science and Technology, edited by Jaffee, R. L, and Burte, H. M., pp. New York: Plenum Press, 1973*Ibid., pp. 1969–1980.

    Google Scholar 

  59. Williams, J. C., and Rhodes, C. G. Rockwell International Science Center, Thousand Oaks, CA. Unpublished research.

    Google Scholar 

  60. Williams, J. C.; Froes, F. H.; and Yolton, C. F. Some observations on the structure of Ti-11.5Mo-6Zr-4.5Sn (Beta III). Met. Trans. 11A:356–358 (1980).

    CAS  Google Scholar 

  61. Hagemeyer, J. W., and Gordon, D. E. Properties of two beta titanium alloys after aging at several different temperatures. In The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. 1957–1968. New York: Pergamon Press, Ltd., 1973.

    Google Scholar 

  62. Rhodes, C. G., and Paton, N. E. The influence of microstructure on mechanical properties in Ti-3Al-8V-6Cr-4Mo-4Zr (Beta C). Met. Trans. 8A:1749–1861 (1977).

    CAS  Google Scholar 

  63. Chen, C. C.; Hall, J. A.; and Boyer, R. R. High strength beta titanium alloy forgings for aircraft structural applications. In Titanium ′80 Science and Technology, edited by Kimura, A., and Izumi, O., pp. 459–466. Warrendale, PA: Metallurgical Society of AIME, 1980.

    Google Scholar 

  64. Hicks, A. G.; Nelson, G. W.; and Rosenberg, H. W. Beta titanium foil. J. Met. 34 (12):A35 (1982).

    Google Scholar 

  65. Rosenberg, H. W. Ti-15–3: A new cold-formable sheet titanium alloy. J. Met. 35 (11):30–34 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George F. Vander Voort

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Van Nostrand Reinhold Company Inc.

About this chapter

Cite this chapter

Rhodes, C.G. (1986). Microscopy and Titanium Alloy Development. In: Vander Voort, G.F. (eds) Applied Metallography. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9084-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9084-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9086-2

  • Online ISBN: 978-1-4684-9084-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics