Advertisement

Microscopy and Titanium Alloy Development

  • C. G. Rhodes

Abstract

Although the Kroll process for refining titanium was invented in 1937, significant production in the U.S. did not begin until 1948. It was the advent of the aircraft jet engine that stimulated growth of the titanium industry, primarily because of titanium’s excellent strength-to-weight ratio. A wide variety of alloy compositions evolved for various aircraft applications, not only for engines, but for airframe structures as well.1 As the demand for these applications ebbed and flowed in the years following 1948, the industry began to cultivate other areas for use. The corrosion resistance of Ti made it a viable replacement for stainless steels in many applications in the chemical processing industry.2 More recently, Ti has been used in various types of prostheses for surgical implant in humans.3

Keywords

Beta Phase Alpha Phase Beta Titanium Alloy Beta Transus Beta Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jaffee, R. I., and Promisel, N. E., eds. The Science, Technology and Application of Titanium. New York: Pergamon Press, Ltd., 1970.Google Scholar
  2. 2.
    Inomata, S.; Goto, A.; Yano, K.; Tsuchimoto, M.; Shibata, S.; Fujii, T.; Sakurai, T.; and Kanamoto, M. On the explosive bonding and forming of titanium. *Jaffee, R. I., and Promisel, N. E., eds. The Science, Technology and Application of Titanium. New York: Pergamon Press, Ltd., 1970*Ibid., pp. 1065–1080.Google Scholar
  3. 3.
    Zwicker, U.; Buhler, K.; Muller, R.; Beck, H.; Schmid, H. J; and Ferstl, J. Mechanical properties and tissue reactions of a titanium alloy for implant material. In Titanium ′80 Science and Technology, edited by Kimura, H., and Izumi, O., pp. 505–518. Warrendale, PA: Met. Soc. AIME, 1980.Google Scholar
  4. 4.
    Ogden, H. R., and Holden, F. C. Metallography of titanium alloys. TML Report No. 103. Columbus OH: Battelle Memorial Inst., 1958.Google Scholar
  5. 5.
    Frost, P. D.; Parris, W. M.; Hirsch, L. L.; Doig, J. R.; and Schwartz, C. M. Isothermal transformation of titanium-chromium alloys. Trans. ASM 46:231–256 (1954).Google Scholar
  6. 6.
    Holden, F. C., and Young, A. D. Electron micrographic study of aging in a beta titanium alloy. Trans. Met. Soc. AIME 212:287–288 (1958).Google Scholar
  7. 7.
    Fentiman, W. P.; Goosey, R. E.; Hubbard, R. T. J.; and Smith, M. D. Exploitation of a simple alpha titanium alloy base in the development of alloys of diverse mechanical properties. In The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. 987–999. New York: Pergamon Press, Ltd., 1970.Google Scholar
  8. 8.
    Zwicker, U., and Katsch, E. Cracking of titanium alloys under stress during oxidation in air. *The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. New York: Pergamon Press, Ltd., 1970*Ibid., pp. 299–306.Google Scholar
  9. 9.
    Coyne, J. R. The beta forging of titanium alloys. *The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. New York: Pergamon Press, Ltd., 1970*Ibid., pp. 97–110.Google Scholar
  10. 10.
    Green, T. E., and Minton, C. D. T. The effect of beta processing on properties of titanium alloys. *The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. New York: Pergamon Press, Ltd., 1970*Ibid., pp. 111–119.Google Scholar
  11. 11.
    Frederick, S. F., and Hanna, W. D. Fracture toughness and deformation of titanium alloys at low temperatures. Met. Trans. 1:347–352 (1970).CrossRefGoogle Scholar
  12. 12.
    Kennedy, J. Fatigue behavior of solution treated and quenched Ti-6A1–4V. Grumman Res. Dept. Report RE-630. 1981.Google Scholar
  13. 13.
    Lee, D., and Backofen, W. A. Superplasticity in some titanium and zirconium alloys. Trans. TMS-AIME 239:1034–4040 (1967).Google Scholar
  14. 14.
    Hall, I. W., and Hammond, C. The relationship between crack propagation characteristics and fracture toughness in alpha+beta alloys, In Titanium Science and Technology, edited by Jaffee, R. I. and Burte, H. M., pp. 1365–1376. New York: Plenum Press, 1973.Google Scholar
  15. 15.
    Thompson, A. W.; Williams, J. C.; Frandsen, J. D.; and Chesnutt, J. C. The effect of microstructure on fatigue crack propagation rate in Ti-6A1–4V. In Titanium and Titanium Alloys, edited by Williams, J. C., and Belov, A. F., pp. 691–704, New York; Plenum Press, 1982.Google Scholar
  16. 16.
    Spurling, R. A. Rockwell International Science Center, Thousand Oaks, CA. Unpublished research.Google Scholar
  17. 17.
    Cortes, F. R. Electrolytic polishing of refractory metals. Metals Progress 88:97–100 (1961).Google Scholar
  18. 18.
    Rice, L.; Hinesley, C. P.; and Conrad, H. Techniques for optical and electron microscopy of titanium. Metallog. 4:257–268 (1971).CrossRefGoogle Scholar
  19. 19.
    Blackburn, M. J.; and Williams, J. C. The preparation of thin foils of titanium alloys. Trans. TMS-AIME 239:287–288 (1967).Google Scholar
  20. 20.
    Spurling, R. A. A technique for preparing thin foils of Ti and Ti alloys for transmission electron microscopy. Met. Trans. 6A:1660–1661 (1975).Google Scholar
  21. 21.
    Spurling, R. A.; Rhodes, C. G.; and Williams, J. C. The microstructure of Ti alloys as influenced by thin foil artifacts. Met. Trans. 5:2597–2600 (1974).CrossRefGoogle Scholar
  22. 22.
    Rhodes, C. G., and Paton, N. E. Formation characteristics of the alpha/beta interface phase in Ti-6A1–4V. Met. Trans. A 10A:209–216 (1979).CrossRefGoogle Scholar
  23. 23.
    Banerjee, D., and Williams, J. C. The effect of foil preparation technique on interface phase formation in Ti alloys. Scr. Met. 17:1125–1128 (1983).CrossRefGoogle Scholar
  24. 24.
    Burgers, W. G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1:561–586 (1934).CrossRefGoogle Scholar
  25. 25.
    Jaffee, R. I. Metallurgical synthesis. In Titanium Science and Technology, edited by Jaffee, R. I., and Burte, H. M., pp. 1665–1693. New York: Plenum Press, 1973.Google Scholar
  26. 26.
    Williams, J. C., and Belov, A. F., eds. Titanium and Titanium Alloys. New York: Plenum Press, 1982.Google Scholar
  27. 27.
    Kimura, H., and Izumi, O., eds. Titanium ′80 Science and Technology. Warrendale, PA: Metallurgical Society of AIME, 1980.Google Scholar
  28. 28.
    Rosenberg, H. W. Titanium alloying in theory and practice. In The Science, Technology and Applications of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. 851–859. New York; Pergammon Press, Ltd., 1970.Google Scholar
  29. 29.
    Bohanek, E., and Kessler, H. D. An advanced titanium alloy for service at temperatures in excess of 800°F. In Reactive Metals, vol. 2, edited by Clough, W. R., pp. 23–41. NY: Interscience Publishers, (1959).Google Scholar
  30. 30.
    Blackburn, M. J. Relationship of microstructure to some mechanical properties of Ti-8Al-1Mo-1V. Trans. ASM 59:694–708 (1966).Google Scholar
  31. 31.
    Brown, B. F. ASTM Annual Meeting, *J. Electr. Soc. 114:551–556 (1967)*cited in Ref. 32.CrossRefGoogle Scholar
  32. 32.
    Beck, T. R. Stress corrosion cracking of titanium alloys. J. Electr. Soc. 114:551–556 (1967).CrossRefGoogle Scholar
  33. 33.
    Jackson, J. D., and Boyd, W. K. Stress corrosion cracking in titanium and titanium alloys. In The Science, Technology and Application of Titanium, edited by Jaffee, R. L, and Promisel, N. E., pp. 267–281. New York: Pergamon Press, Ltd., 1970.Google Scholar
  34. 34.
    Erdeman, V. J., and Ross, E. W. Long time stability of Ti-679 after creep exposure for times to 15,000 hour. Ibid., pp. *The Science, Technology and Application of Titanium, edited by Jaffee, R. L, and Promisel, N. E., pp. New York: Pergamon Press, Ltd., 1970*829–837.Google Scholar
  35. 35.
    Rosenberg, H. W. High temperature alloys. In Titanium Science and Technology, edited by Jaffee, R. I., and Burte, H. M., pp. 2127–2140. New York: Plenum Press, 1973.Google Scholar
  36. 36.
    Paton, N. E., and Mahoney, M. W. Creep of titanium-silicon alloys. Met. Trans. A 7A:1685–1694 (1976).CrossRefGoogle Scholar
  37. 37.
    Neil, D. F. and Blenkinsop, P. A. Effect of heat treatment on structure and properties of IMI829. In Titanium ′80 Science and Technology, edited by Kimura, A., and Izumi, O., pp. 1287–1297. Warrendale, PA: Metallurgical Society of AIME, 1980.Google Scholar
  38. 38.
    Blenkinsop, P. A. IMI Titanium Limited, Birmingham, England. Private communication.Google Scholar
  39. 39.
    Rhodes, C. G.; Paton N. E.; and Mahoney, M. W. Creep properties of Ti-8Al-5Nb-5Zr-0.25Si. In Titanium Science and Technology, edited by Liitjering, G.; Zwicker, U.; and Bunk, W., pp. 2355–2361. Oberursel, W. Germany: Deutsche Gesellschaft für Metallkunde V., 1985.Google Scholar
  40. 40.
    Klier, E. P., and Feola, N. J. Notch tensile properties of selected titanium alloys. Trans. TMS-AIME 209:1271–1277 (1957).Google Scholar
  41. 41.
    Ogden, H. R.; Douglass, R. W.; Holden, F. C.; and Jaffee, R. I. The notch sensitivity of Ti-5Al-2.5Sn, Ti-6A1–4V and Ti-2Fe-2Cr-2Mo titanium alloys. Trans. Met. Soc. AIME 221:1235–1240 (1961).Google Scholar
  42. 42.
    Becker, D. W.; Messler, R. W. Jr.; and Baeslack, W. A., III. Titanium welding. In Titanium ′80 Science and Technology, edited by Kimura, A., and Izumi, O., pp. 255–275. Warrendale, PA: Metallurgical Society of AIME, 1980.Google Scholar
  43. 43.
    Craighead, C. M.; Simmon, O. W.; and Eastwood, L. W. Ternary alloys of titanium. Trans. AIME 188:514–538 (1950).Google Scholar
  44. 44.
    Berryman, R. G.; Froes, F. H.; Chesnutt, J. C.; Rhodes, C. G.; Williams, J. C.; and Malone, R. F. High toughness titanium alloy development. Technical Report TFD-74–657, Naval Air Systems Command, Washington, D.C., 1974.Google Scholar
  45. 45.
    Williams, J. C.; Froes, F. H.; Chesnutt, J. C.; Rhodes, C. G.; and Berryman, R. G. Development of high-fracture toughness titanium alloy. In Toughness and Fracture Behavior of Titanium, STP 651, pp. 64–114. Philadelphia: Am. Soc. for Testing and Materials, 1978.CrossRefGoogle Scholar
  46. 46.
    Chesnutt, J. C.; Rhodes, C. G.; and Williams, J. C. Relationship between mechanical properties, microstructure and fracture topography in alpha+beta titanium alloys. In FractographyMicroscopic Cracking Processes, ASTM STP 600, pp. 99–138. Philadelphia: Am. Soc. for Testing and Materials, 1976.Google Scholar
  47. 47.
    Hamilton, C. H.; Stacher, G. W.; Mills, J. A.; and Li, H. Superplastic forming of titanium structures. AFML-TR-76–62, Wright-Patterson AFB, OH, April 1976.Google Scholar
  48. 48.
    Edington, J. W. Physical metallurgy of superplasticity. Met. Tech. 3:138–151 (1976).Google Scholar
  49. 49.
    Wert, J. A., and Paton, N. E. Enhanced superplasticity and strength in modified Ti-6A1–4V alloys. Met. Trans. 14A:2535–2544 (1983).Google Scholar
  50. 50.
    Hammond, C. Superplasticity in titanium base alloys. In Superplastic Forming of Structural Alloys, edited by Paton, N. E., and Hamilton, C. H., pp. 131–145. Warrendale, PA: TMS-AIME, 1982.Google Scholar
  51. 51.
    Blackburn, M. J.; and Smyri, W. H. Stress corrosion and hydrogen embrittlement. In Titanium Science and Technology, edited by Jaffee, R. I., and Burte, H. M., pp. 2577–2609. New York: Plenum Press, 1973.Google Scholar
  52. 52.
    Kerr, W. R.; Smith, P. R.; Rosenblum, M. E.; Gurney, F. J.; Mahajan, Y. R.; and Bidwell, L. R. Hydrogen as an alloying element in titanium (Hydrovac). In Titanium ′80 Science and Technology, edited by Kimura, A., and Izumi, O., pp. 2477–2846. Warrendale, PA: Metallurgical Society of AIME, 1980.Google Scholar
  53. 53.
    Molinier, R.; Moulin, J.; and Syre, R. A. A study of the metallurgical characteristics of Ti-6Al-6V-2Sn alloy. In The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. 979–982. New York: Pergamon Press, Ltd., 1970.Google Scholar
  54. 54.
    McLean, D. Mechanical Properties of Metals: New York: John Wiley & Sons, Inc., 1962.Google Scholar
  55. 55.
    Petersen, V. C.; Bomberger, H. B.; and Vordahl, M. B. An age hardening titanium alloy. Metal Progress 76:119–122 (1959).Google Scholar
  56. 56.
    Hunter, D. B.; and Arnold, S. V. Metallurgical characteristics and structural properties of Ti-8Mo-8V-2Fe-3Al sheet, plate and forgings. In The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. 959–967. New York: Pergamon Press, Ltd., 1970.Google Scholar
  57. 57.
    Bohanek, E. Deep hardenable titanium alloys for large airframe elements. In Titanium Science and Technology, edited by Jaffee, R. L, and Burte, H. M., pp. 1993–2007. New York: Plenum Press, 1973.Google Scholar
  58. 58.
    Petersen, V. C.; Froes, F. H.; and Malone, R. F. Metallurgical characteristics and mechanical properties of Beta III, a heat treatable titanium alloy. *Titanium Science and Technology, edited by Jaffee, R. L, and Burte, H. M., pp. New York: Plenum Press, 1973*Ibid., pp. 1969–1980.Google Scholar
  59. 59.
    Williams, J. C., and Rhodes, C. G. Rockwell International Science Center, Thousand Oaks, CA. Unpublished research.Google Scholar
  60. 60.
    Williams, J. C.; Froes, F. H.; and Yolton, C. F. Some observations on the structure of Ti-11.5Mo-6Zr-4.5Sn (Beta III). Met. Trans. 11A:356–358 (1980).Google Scholar
  61. 61.
    Hagemeyer, J. W., and Gordon, D. E. Properties of two beta titanium alloys after aging at several different temperatures. In The Science, Technology and Application of Titanium, edited by Jaffee, R. I., and Promisel, N. E., pp. 1957–1968. New York: Pergamon Press, Ltd., 1973.Google Scholar
  62. 62.
    Rhodes, C. G., and Paton, N. E. The influence of microstructure on mechanical properties in Ti-3Al-8V-6Cr-4Mo-4Zr (Beta C). Met. Trans. 8A:1749–1861 (1977).Google Scholar
  63. 63.
    Chen, C. C.; Hall, J. A.; and Boyer, R. R. High strength beta titanium alloy forgings for aircraft structural applications. In Titanium ′80 Science and Technology, edited by Kimura, A., and Izumi, O., pp. 459–466. Warrendale, PA: Metallurgical Society of AIME, 1980.Google Scholar
  64. 64.
    Hicks, A. G.; Nelson, G. W.; and Rosenberg, H. W. Beta titanium foil. J. Met. 34 (12):A35 (1982).Google Scholar
  65. 65.
    Rosenberg, H. W. Ti-15–3: A new cold-formable sheet titanium alloy. J. Met. 35 (11):30–34 (1983).Google Scholar

Copyright information

© Van Nostrand Reinhold Company Inc. 1986

Authors and Affiliations

  • C. G. Rhodes
    • 1
  1. 1.Rockwell International Science CenterUSA

Personalised recommendations