Advertisement

Metallography and Welding Process Control

  • C. E. Cross
  • O. Grong
  • S. Liu
  • J. F. Capes

Abstract

Although welding metallurgy is concerned with the application of well-known metallurgical principles, the conditions existing during welding will be highly different from those prevailing during refining, casting, and forming of metals because of the strong nonisothermal nature of the arc-welding process. As a result, the understanding of the various chemical and physical reactions in arc welding is far less developed than it is for steelmaking, and, hence, predictions of weld microstructures and the resulting mechanical properties based on the consumables/parent plate and operational conditions can be subject at this point to no more than an incomplete theoretical treatment.

Keywords

Weld Metal Heat Input Weld Pool Fusion Zone Weld Bead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lancaster, F. L. Metallurgy of Welding. 3rd Ed. London: George Allen & Unwin Ltd., 1980.CrossRefGoogle Scholar
  2. 2.
    Easterling, E. Introduction to the Physical Metallurgy of Welding. London: Butterworths & Co. Ltd., 1983.Google Scholar
  3. 3.
    Davies, G. J., and Garland, J. G. Solidification structures and properties of fusion welds. Int. Met. Rev. 20:83–106 (1975).CrossRefGoogle Scholar
  4. 4.
    Matsuda, F.; Hashimoto, T.; and Senda, T. Fundamental investigations on solidification structure in weld metal. Trans. Nat. Res. Inst. Metals 11:43–58 (1969).Google Scholar
  5. 5.
    Savage, W. F.; and Aronson, A. H. Preferred orientation in the weld fusion zone. Welding Journal 45:85s–89s (1966).Google Scholar
  6. 6.
    Savage, W. F., and Hrubec, R. J. Synthesis of weld solidification using crystalline organic materials. Welding Journal 51:260s–271s (1972).Google Scholar
  7. 7.
    Savage, W. F.; Lundin, C. D.; and Aronson, A. H. Weld metal solidification mechanics. Welding Journal 44:175s–181s (1965).Google Scholar
  8. 8.
    Adams, C. M. Cooling rates and peak temperatures in fusion welding. Welding Journal 37:210s–215s (1958).Google Scholar
  9. 9.
    Brown, P. E., and Adams, C. M. Fusion zone structures and properties in aluminum alloys. Welding Journal 39:520s–524s (1960).Google Scholar
  10. 10.
    Jarman, R. A., and Jordan, M. F. Relationship between heat input and dendritic structure of full-penetration weld beads in a commercial aluminum-copper alloy. Journal Inst. Metals 98:55–57 (1970).Google Scholar
  11. 11.
    Brody, H. D., and Flemings, M. C. Solute redistribution in dendritic solidification. Trans. AIME 236:615–624 (1966).Google Scholar
  12. 12.
    Michael, A. B., and Bever, M. B. Solidification of aluminum-rich aluminum copper alloys. Trans. AIME 200:47–56 (1954).Google Scholar
  13. 13.
    Murty, Y., and Kattamis, T. Z. Structure of highly undercool cobalttin eutectic alloy. J. Crystal Growth. 22:219–224 (1974).CrossRefGoogle Scholar
  14. 14.
    Chadwick, G. A. Eutectic alloy solidification. Prog. in Materials Science, Pergamon, 12:114–121 (1963).Google Scholar
  15. 15.
    Cross, C. E., and Olson, D. L. Modification of eutectic weld metal microstructure. Welding Journal 61:381s–387s (1982).Google Scholar
  16. 16.
    Rohatgi, P., and Adams, C. M. Colony and dendritic structures produced on solidification of eutectic aluminum copper alloy. Trans. AIME 245:1609–1613 (1969).Google Scholar
  17. 17.
    D’Annessa, A. T. Characteristic redistribution of solute in fusion welding. Welding Journal 45:569s–576s (1966).Google Scholar
  18. 18.
    Borland, J. C. Generalized theory of super-solidus cracking in welds and castings. British Welding Journal 4:508–512 (1960).Google Scholar
  19. 19.
    Clyne, T. C., and Davies, G. J. Comparison between experimental data and theoretical predictions relating to dependence of solidification cracking on composition. TMS Proc. Int. Conf. Solidification-Sheffield: 275–278 (1977).Google Scholar
  20. 20.
    Senda, T., and Matsuda, F. Fundamental investigations on solidification crack susceptibility for weld metals with trans-varestraint test. Trans. Jap. Weld. Soc. 2:141–162 (1972).Google Scholar
  21. 21.
    Dudas, J. H., and Collins, F. R. Preventing weld cracks in high-strength aluminum alloys. Welding Journal 45:241s–249s (1966).Google Scholar
  22. 22.
    Brooks, J. A.; Thompson, A. W.; and Williams, J. C. A fundamental study of beneficial effects of delta ferrite in reducing weld cracking. Welding Journal 63:71s–83s (1984).Google Scholar
  23. 23.
    Beraha, E., and Shpigler, B. Color Metallography. Metals Park, OH: ASM, 1977.Google Scholar
  24. 24.
    Gray, R. J. Magnetic etching with Ferrofluid: Metallographic Specimen Preparation. New York: Plenum, 1973, pp. 155–177.Google Scholar
  25. 25.
    Devletian, J. H., and Wood, W. E. Factors affecing porosity in aluminum welds—a review. WRC Bulletin 290:1–18 (1983).Google Scholar
  26. 26.
    Indacochea, J. E. Effect of the manganese—silicate base submerged arc welding flux composition on the weld metal composition and microstructure. Colorado School of Mines Ph.D. Thesis T-2511 (1981).Google Scholar
  27. 27.
    Aaronson, H. I. Proeutectoid ferrite and the proeutectoid cementite reactions. Proc. Symp. Decomp. Austenite by Diffusional Processes. Philadelphia: AIME, 1960, pp. 387–548.Google Scholar
  28. 28.
    Committee of Welding Metallurgy of Japan Welding Society. Classification of microstructures in low C-low alloy steel weld metal and terminology. IIW DOC IX-1282–83.Google Scholar
  29. 29.
    Loberg, B.; Nordgren, A.; Strid, J.; and Easterling, K. E. The role of alloy composition on the stability of nitrides in Ti-microalloyed steels during weld thermal cycles. Met. Trans. 15A:33–41 (1984).Google Scholar
  30. 30.
    Dolby, R. E. Factors controlling the HAZ and weld metal toughness in C-Mn steels. Proc. 1st National Conference on Fracture. Johannesburg, 1979, pp. 123–140.Google Scholar
  31. 31.
    Dolby, R. E., and Saunders, G. G. Subcritical HAZ fracture toughness of C-Mn steels. Met. Constr. 4:185–190 (1972).Google Scholar
  32. 32.
    Matthews, S. J., et al. Dissimilar metals. AWS Welding Handbook 4:513–547 (1982).Google Scholar
  33. 33.
    Graville, B. A., et al. High alloy steels. AWS Welding Handbook 4:169–209 (1982).Google Scholar
  34. 34.
    Campbell, G. M., et al. Evaluation of fractors controlling high temperature service life of 2 ¼Cr-1Mo steel to austenitic stainless steel weldments. ASM Proc. Trends in Welding Research: 443–470 (1982).Google Scholar

Copyright information

© Van Nostrand Reinhold Company Inc. 1986

Authors and Affiliations

  • C. E. Cross
    • 1
  • O. Grong
    • 1
  • S. Liu
    • 1
  • J. F. Capes
    • 1
  1. 1.Center for Welding ResearchColorado School of MInesUSA

Personalised recommendations