Advertisement

Metallography in the Scanning Transmission Electron Microscope

  • D. B. Williams

Abstract

The scanning transmission electron microscope (STEM) is a combination of the conventional transmission electron microscope (TEM) and scanning electron microscope (SEM) that has revolutionized the amount of information that can be obtained from a thin-foil TEM specimen. Figure 11–1(a) shows the range of signals generated when a high-energy (usually ~ 100 kV) electron beam interacts with a thin-foil specimen. Although all of these signals are theoretically accessible in the STEM, visible light and absorbed and Auger electrons are rarely sought. In practice, detectors are used to pick up the remaining signals [see Fig. 11–1(b)], as described in appropriate sections of this chapter. It will be assumed that the reader is familiar with the conventional TEM and SEM and the information that is available about them. Several standard texts describing TEM and SEM techniques are available, for example, see References 1, 2, and 3.

Keywords

Thin Foil Foil Thickness Thin Specimen Convergent Beam Electron Diffraction Electron Energy Loss Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edington, J. W. Practical Electron Microscopy in Materials Science, vols. 1–5. London: MacMillan Press Ltd. (Philips Technical Library), 1974.Google Scholar
  2. 2.
    Hirsch, P. B.; Howie, A.; Nicholson, R. B.; Pashley, D. W.; and Whelan, M. J. Electron Microscopy of Thin Crystals. New York: Krieger, 1977.Google Scholar
  3. 3.
    Goldstein, J. I.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Fiori, C. E.; and Lifshin, E. Scanning Electron Microscopy and X-ray Microanalysis. New York: Plenum Press, 1981.CrossRefGoogle Scholar
  4. 4.
    Joy, D. C.; Romig, A. D., Jr.; and Goldstein, J. I. Principles of Analytical Electron Microscopy. New York: Plenum Press, 1986.Google Scholar
  5. 5.
    Williams, D. B. Practical Analytical Electron Microscopy in Materials Science. Mahwah. NJ: Philips Electron Optics Publishing Group, 1984.Google Scholar
  6. 6.
    Maher, D. M., and Joy, D. C. The formation and interpretation of defect images from crystalline materials in the scanning transmission electron microscope. Ultramicroscopy 1:239–253 (1976).CrossRefGoogle Scholar
  7. 7.
    Thompson-Russell, K. C., and Edington, J. W. Electron Microscope Specimen Preparation Techniques in Material Science. Eindhoven: N. V. Philips Gloelampenfabrieken, 1977.Google Scholar
  8. 8.
    Thompson, M. N.; Doig, P.; Edington, J. W.; and Flewitt, P. E. J. The influence of specimen thickness on X-ray count rates in STEM microanalysis. Phil. Mag. 35:1537–1542 (1977).CrossRefGoogle Scholar
  9. 9.
    Pountney, J. M., and Loretto, M. H. The influence of surface layers in STEM X-ray microanalysis. Electron Microscopy 3:180–181. Leiden, The Netherlands, 7th European Congress on Electron Microscopy Foundation, 1980.Google Scholar
  10. 10.
    Fraser, H. L., and McCarthy, J. P. Specimen preparation limitations in quantitative thin foil microanalysis. In Microbeam Analysis. San Francisco, CA: San Francisco Press, 1982, pp. 93–96.Google Scholar
  11. 11.
    Ball, M. D., and Furneaux, R. C. Ultramicrotomy as a specimen preparation technique for thin foil microanalysis. In Developments in Electron Microscopy and Analysis 1981. Bristol and London: The Institute of Physics, 1982, pp. 179–180.Google Scholar
  12. 12.
    Hren, J. J. Barriers to AEM: Contamination and etching. In Introduction to Analytical Electron Microscopy. New York: Plenum Press, 1979, pp. 481–505.Google Scholar
  13. 13.
    Newbury, D. E. Beam broadening in the analytical electron microscope. In Microbeam Analysis. San Francisco, CA: San Francisco Press, 1982, pp. 79–83.Google Scholar
  14. 14.
    Romig, A. D., Jr., and Goldstein, J. I. Detectability limit and spatial resolution in STEM X-ray microanalysis: Application to Fe-Ni alloys. In Microbeam Analysis. San Francisco, CA: San Francisco Press, 1979, pp. 124–128.Google Scholar
  15. 15.
    Jones, I. P., and Loretto, M. H. Some aspects of quantitative STEM X-ray microanalysis. J. Microsc. 124:3–13 (1981).CrossRefGoogle Scholar
  16. 16.
    Goldstein, J. L; Costley, J. L.; Lorimer, G. W.; and Reed, S. J. B. Quantitative X-ray analysis in the electron microscope. Scanning Electron Microscopy 1:315–324. Chicago IITRI (1977).Google Scholar
  17. 17.
    Reed, S. J. B. The single scattering model and spatial resolution in X-ray analysis of thin foils. Ultramicroscopy 7:405–410 (1982).CrossRefGoogle Scholar
  18. 18.
    Brown, L. M. Progress and prospects for STEM in materials science. In Developments in Electron Microscopy and Analysis. Bristol and London: The Institute of Physics, 1977, pp. 141–148.Google Scholar
  19. 19.
    Vesely, D. The electron beam damage of synthetic polymers. In Developments in Electron Microscopy and Analysis. Bristol and London: The Institute of Physics, 1977, pp. 389–394.Google Scholar
  20. 20.
    Allen, R. M. Secondary electron imaging in the STEM. Scanning Electron Microscopy 3:905–918. AMF O’Hare, IL: SEM Inc. (1985).Google Scholar
  21. 21.
    Gorlen, K. E.; Barden, L. K.; Del Priore, J. S.; Fiori, C. E.; Gibson, C. G.; and Leapman, R. D. Computerized analytical electron microscope for elemental imaging. Rev. Sci. Instrum. 55:912–921 (1986).CrossRefGoogle Scholar
  22. 22.
    Isaacson, M.; Ohtsuki, M.; and Utlaut, M. Electron microscopy of individual atoms. In Introduction to Analytical Electron Microscopy. New York: Plenum Press, 1979, pp. 343–367.Google Scholar
  23. 23.
    Cowley, J. M. Coherent interference effects in SIEM and CBED. Ultramicroscopy 7:19–26 (1981).CrossRefGoogle Scholar
  24. 24.
    Kelly, P. M.; Jostsons, A.; Blake, R. G.; and Napier, J. G. The determination of foil thickness by scanning transmission electron microscopy. Phys. Stat. Sol. A31: 771–780 (1975).CrossRefGoogle Scholar
  25. 25.
    Allen, S. M. Foil thickness measurements from convergent beam diffraction patterns. Phil. Mag. A43:325–335 (1981).Google Scholar
  26. 26.
    Steeds, J. W. Microanalysis by convergent beam electron diffraction. In Quantitative Microanalysis with High Spatial Resolution. London: The Metals Society, 1981, pp. 210–216.Google Scholar
  27. 27.
    Ecob, R. C.; Shaw, M. P.; Porter, A. J.; and Ralph, B. The application of convergent beam electron diffraction to the detection of small symmetry changes accompanying phase transformations. Phil. Mag. 44A:1117–1133 (1981).Google Scholar
  28. 28.
    Steeds, J. W. Convergent beam electron diffraction. In Introduction to Analytical Electron Microscopy. New York: Plenum Press, 1979, pp. 387–427.Google Scholar
  29. 29.
    Raghavan, M.; Koo, J. Y.; and Petkovic-Luton, R. Some applications of convergent beam electron diffraction in metallurgical research. Journal of Metals 36(6):44–53 (1983).Google Scholar
  30. 30.
    Mansfield, J. Convergent beam electron diffraction of alloy phases. Bristol (U.K.): Adam Hilger, 1984.Google Scholar
  31. 31.
    Steeds, J. W., and Evans, N. S. Practical examples of point and space group determination in convergent beam diffraction. In Proc. 38th EMSA Meeting. Baton Rouge, LA: Claitors Publishing Division, 1980, pp. 188–191.Google Scholar
  32. 32.
    Buxton, B. F.; Eades, J. A.; Steeds, J. W.; and Rackham, G. M. The symmetry of electron diffraction zone axis patterns. Phil. Trans. Roy. Soc. 281:171–194 (1976).CrossRefGoogle Scholar
  33. 33.
    Cliff, G., and Lorimer, G. W. The quantitative analysis of thin specimens. J. Microsc. 103:203–207 (1975).CrossRefGoogle Scholar
  34. 34.
    Wood, J. E.; Williams, D. B.; and Goldstein, J. I. Experimental and theoretical determination of k AFe factors for quantitative X-ray microanalysis in the analytical electron microscope. J. Microsc. 133:255–274 (1984).CrossRefGoogle Scholar
  35. 35.
    Williams, D. B., and Goldstein, J. I. Absorption effects in quantitative thin film X-ray microanalysis. In Analytical Electron Microscopy. San Francisco, CA: San Francisco Press, 1981, pp. 39–46.Google Scholar
  36. 36.
    Nockolds, C.; Nasir, M. J.; Cliff, G.; and Lorimer, G. W. X-ray fluorescence correction in thin foil analysis and direct methods for foil thickness determination. In Electron Microscopy and Analysis 1979. Bristol and London: The Institute of Physics, 1980, pp. 417–420.Google Scholar
  37. 37.
    Raghavan, M.; Mueller, R. R.; Vaughn, G. A.; and Floreen, S. Determination of isothermal sections of nickel rich portion of Ni-Cr-Mo system by analytical electron microscopy. Met. Trans. 15A:783–792 (1984).Google Scholar
  38. 38.
    Romig, A. D., Jr., and Goldstein, J. I. Determination of the Fe-Ni and Fe-Ni-P phase diagrams at low temperature (700° to 300°C). Met. Trans. 11A:1151–1159 (1980).Google Scholar
  39. 39.
    Joy, D. C. The basic principles of electron energy loss spectroscopy. In Introduction to Analytical Electron Microscopy. New York: Plenum Press, 1979, pp. 223–244.Google Scholar
  40. 40.
    Joy, D. C., and Newbury, D. E. A “round robin” test on ELS quantitation. In Analytical Electron Microscopy 1981. San Francisco, CA: San Francisco Press, 1981, pp. 178–180.Google Scholar
  41. 41.
    Egerton, R. F. Formulae for light element analysis by electron energy loss spectrometry. Ultramicroscopy 3:243–251 (1978).CrossRefGoogle Scholar
  42. 42.
    Lorimer, G. W.; Cliff, G.; and Clark, J. N. Determination of the thickness and spatial resolution for the quantitative analysis of thin foils. In Developments in Electron Microscopy and Analysis. London: Academic Press, 1976, pp. 153–156.Google Scholar

Copyright information

© Van Nostrand Reinhold Company Inc. 1986

Authors and Affiliations

  • D. B. Williams
    • 1
  1. 1.Department of Materials Science and EngineeringLehigh UniversityUSA

Personalised recommendations