The SEM as a Metallographic Tool

  • George F. Vander Voort


Since its commercial introduction about 20 years ago, the use of the scanning electron microscope (SEM) in materials science has grown to the point where it is a rather common tool. Indeed, its use rivals that of the light optical microscope (LOM). This popularity stems from the substantial progress made by instrument manufacturers, the wide range of instruments available, and the many advantages of the SEM—ease of specimen preparation (compared to other electron microscopy techniques), high resolution, extensive depth-of-field, and wide range of magnification. An additional advantage is that chemical analysis can also be performed by the use of suitable attachments to the SEM.


Backscatter Electron Image Secondary Electron Image Beta Phase Scanning Electron Microscope Examination Light Optical Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hearle, J. W. S.; Sparrow, J. T.; and Cross, P. M. The Use of the Scanning Electron Microscope, Oxford: Pergamon Press, 1972.Google Scholar
  2. 2.
    Wells, O. C. Scanning Electron Microscopy. New York: McGraw-Hill Book Co., 1974.Google Scholar
  3. 3.
    Goldstein, J. I., and Yakowitz, H., eds. Practical Scanning Electron Microscopy. New York: Plenum Press, 1975.Google Scholar
  4. 4.
    Goldstein, J. I., et al. Scanning Electron Microscopy and X-Ray Microanalysis. New York: Plenum Press, 1981.CrossRefGoogle Scholar
  5. 5.
    Heinrich, K. F. J. Electron Beam X-Ray Microanalysis. New York: Van Nostrand Reinhold Co., 1981.Google Scholar
  6. 6.
    Pease, R. F. W. Fundamentals of scanning electron microscopy. Scanning Electron Microscopy/1971/Part I. Chicago, IL; HT Res. Inst., pp. 9–16 (1971).Google Scholar
  7. 7.
    Joy, D. The scanning electron microscope—principle and applications. Scanning Electron Microscopy/1973. Chicago, IL: HT Res. Inst., pp. 743–750 (1973).Google Scholar
  8. 8.
    Russ, J. L. Scanning electron microscopy. In Systematic Materials Analysis 2:159–181. New York: Academic Press (1974).Google Scholar
  9. 9.
    Johari, O., et al. Sample preparation for scanning electron microscope metallography. Proc. First Annual Technical Meeting of the Intl. Metallographic Society, Nov. 11–13, 1968, Denver, Co. pp. 127–131 (1969).Google Scholar
  10. 10.
    Johari, O., et al. Microstructures of common metals and alloys as observed by the SEM. Scanning Electron Microscopy/1969. Chicago, IL: HT Res. Inst., pp. 277–284 (1969).Google Scholar
  11. 11.
    Johari, O. Microstructure with the SEM—a new approach through SEM fractography. In Electron Microscopy and Structure of Materials, Berkeley, CA: University of California Press, 1972, pp. 313–332.Google Scholar
  12. 12.
    McCall, J. L. Scanning electron microscopy for microstructural analysis. In Microstructural Analysis: Tools and Techniques. New York: Plenum Press, 1973, pp. 93–124.CrossRefGoogle Scholar
  13. 13.
    Yeoman Walker, D. E. Some comments on conventional metallography with the Stereoscan. Scanning Electron Microscopy: Systems and Applications 1973. The Inst. of Physics, Conf. Ser. No. 18, London, pp. 202–207 (1973).Google Scholar
  14. 14.
    Österlund, R., and Vingsbo, O. Scanning electron microscope and optical microscope studies of the topography of some etched steel structures. Ultramicroscopy 4:155–162 (1979).CrossRefGoogle Scholar
  15. 15.
    Meiley, S. L. Optical, SEM, and TEM study of transformed steel structures. Microscope 27:41–52 (1979).Google Scholar
  16. 16.
    Hall, M. G., and Hutchinson, W. B. Smooth surface metallography using the scanning electron microscope. The Metallurgist and Materials Technologist 12:371–375 (July, 1980).Google Scholar
  17. 17.
    Hall, M. G. Metallography in the SEM. Scanning Electron Microscopy/1981/I. AMF O-Hare, IL: SEM Inc., pp. 409–422 (1981).Google Scholar
  18. 18.
    Newbury, D. E. Fundamentals of scanning electron microscopy for physicist: Contrast mechanisms. Scanning Electron Microscopy/1977, I. Chicago, IL: HT Res. Inst., pp. 553–568 (1977).Google Scholar
  19. 19.
    Bishop, H. E. Some electron backscattering measurements for solid targets. 4th Intl. Conf. X-Ray Optics and Microanalysis, Hermann, Paris, pp. 153–158 (1966).Google Scholar
  20. 20.
    Heinrich, K. F. J. Electron probe microanalysis by specimen current measurement. 4th Intl. Conf. X-Ray Optics and Microanalysis, Hermann, Paris, pp. 159–167 (1966).Google Scholar
  21. 21.
    Wittry, D. B. Secondary electron emission in the electron probe. 4th Intl. Conf. X-Ray Optics and Microanalysis, Hermann, Paris, 168–180 (1966).Google Scholar
  22. 22.
    Colby, J. W.; Wise, W. N.; and Conley, D. K. Quantitative microprobe analysis by means of target current measurements. Advances in X-Ray Analysis 10. New York: Plenum Press, pp. 447–461 (1967).Google Scholar
  23. 23.
    Yakowitz, H., et al. Implications of specimen current and time differentiated imaging in scanning electron microscopy. Scanning Electron Microscopy/1973, I. Chicago, IL: IIT Res. Inst., pp. 173 – 180 (1973).Google Scholar
  24. 24.
    Coates, D. G. Kikuchi-like reflection patterns obtained with the scanning electron microscope. Philo. Mag. 16, No. 144:1179–1184 (1967).CrossRefGoogle Scholar
  25. 25.
    Booker, G. R., et al. Some comments on the interpretation of the ‘Kikuchi-like reflection patterns’ observed by scanning electron microscopy. Philo. Mag. 16, No 144:1185–1191 (1967).CrossRefGoogle Scholar
  26. 26.
    Van Essen, C. G., and Schulson, E. M. Selected area channelling patterns in the scanning electron microscope. J. Materials Science 4:336–339 (1969).CrossRefGoogle Scholar
  27. 27.
    Weiss, B., et al. SEM-techniques for the microcharacterization of metals and alloys, I. Practical Metallography 8:477–491 (1971).Google Scholar
  28. 28.
    Klaffke, D. The determination of the orientation of cubic crystals relative to any desired direction using electron channelling patterns in the scanning electron microscope. Practical Metallography 10:615–627 (1973).Google Scholar
  29. 29.
    Durlu, T. N. The use of selected area channelling patterns to determine orientation relationships in martensitic Fe-Ni-C alloys. Scanning Electron Microscopy: Systems and Applications, 1973, Inst. of Physics, London, pp. 320–323 (1973).Google Scholar
  30. 30.
    Davidson, D. L. The quantification of deformation using electron channelling. Scanning Electron Microscopy/1983/III, Chicago, IL: SEM Inc., pp. 1043–1050 (1983).Google Scholar
  31. 31.
    Davidson, D. L. Uses of electron channelling in studying material deformation. Intl. Metals Review 29:75–95 (1984).Google Scholar
  32. 32.
    Fathers, D. J., et al. Magnetic domain contrast from cubic materials in the scanning electron microscope. Philo. Mag. 27:765–768 (1973).CrossRefGoogle Scholar
  33. 33.
    Zwilling, G. Observation of magnetic domains in the scanning electron microscope. Practical Metallography 11:716–728 (1974).Google Scholar
  34. 34.
    Yakowitz, H., and Newbury, D. E. Magnetic domain structures in Fe-3.2 Si revealed by scanning electron microscopy—a photo essay. J. Testing and Evaluation 3:75–78 (Jan. 1975).CrossRefGoogle Scholar
  35. 35.
    Jones, G. A. Magnetic contrast in the scanning electron microscope: An appraisal of techniques and their applications. J. Magnetism and Magnetic Materials 8:263–285 (1978).CrossRefGoogle Scholar
  36. 36.
    Murphy, J. A. Considerations, materials, and procedures for specimen mounting prior to scanning electron microscopic examination. Scanning Electron Microscopy/1982/II. Chicago, IL: SEM Inc., pp. 657–696 (1982).Google Scholar
  37. 37.
    Radavitch, J. F. Private communication.Google Scholar
  38. 38.
    Paul, J., and Bauer, B. Contrast techniques for phase separation in the scanning electron microscope. Practical Metallography 20:213–221 (May, 1983).Google Scholar
  39. 39.
    Vander Voort, G. F. Metallography: Principles and Practice. New York: McGraw-Hill Book Co., 1984.Google Scholar
  40. 40.
    Almond, E. A. et al. Interpretation of SEM fracture surface detail using a sectioning technique. Metallography 3:379–382 (1970).CrossRefGoogle Scholar
  41. 41.
    Hillnhagen, E., and Schauf, E. Two-surface analysis of polished sections in the scanning electron microscope. Practical Metallography 17:29–34 (1980).Google Scholar
  42. 42.
    Kny, E., et al. Electrolytic deep etching—a valuable complementary method to standard metallographic procedures. Practical Metallography 14:512–520 (1977).Google Scholar
  43. 43.
    Fřemunt, P., et al. The study of sulphides by the method of gradual etching. Practical Metallography 17:497–508 (1980).Google Scholar
  44. 44.
    Paul, J., and Mürrle, U. Assessing the changes in shape of structural components in deep etched specimens. Practical Metallography 18:413–423 (1981).Google Scholar
  45. 45.
    Datta, M., et al. Selective dissolution of dendritic or interdendritic phase in Sn-Al alloys. Practical Metallography 20:394–405 (1983).Google Scholar
  46. 46.
    Ross, L. R. Selective etching techniques for SEM examination of superalloys. Microstructural Science 3A:351–356 (1975).Google Scholar
  47. 47.
    Wilson, F. G. The morphology of grain-and twin-boundary carbides in austenitic steels. JISI 209:126–130 (Feb., 1971).Google Scholar
  48. 48.
    Gill, T. P. S., and Gnanamoorthy, J. B. A method for quantitative analysis of delta-ferrite, sigma and M23C6 carbide phases in heat treated type 316 stainless steel weldments. J. Materials Science 17:1513–1518 (1982).CrossRefGoogle Scholar
  49. 49.
    Herbsieb, G., and Schwaab, P., Delineation of the microstructure of high alloy CrNi, CrNiW and CrNiCoW steels by deep etching. Practical Metallography 20:53–63 (1983).Google Scholar
  50. 50.
    Rege, R. A., et al. Three-dimensional view of alumina clusters in aluminum-killed low-carbon steel. Met. Trans. 1:2652–2653 (Sept., 1970).Google Scholar
  51. 51.
    Okohira, K. et al. Observation of three-dimensional shapes of inclusions in low-carbon aluminum-killed steel by scanning electron microscope. Trans. ISIJ 14:102–109 (1974).Google Scholar
  52. 52.
    Baker, T. J. Use of scanning electron microscopy in studying sulphide morphology on fracture surfaces. Sulfide Inclusions In Steel. Metals Park, OH: American Society for Metals, 1975, pp. 135–158.Google Scholar
  53. 53.
    Wilson, A. D. Application of the SEM to the investigation of inclusion behavior in steels. Scanning Electron Microscopy/1977/I. Chicago, IL: HT Research Inst., pp. 121–128 (1977).Google Scholar
  54. 54.
    Inckle, A. Etching of fracture surfaces. J. Materials Science 5:86–88 (Jan., 1970).CrossRefGoogle Scholar
  55. 55.
    Tvrdik, Z., and Vinckier, A. The use of the scanning electron microscope for the investigation of the aging of carbon steel. Practical Metallography 10:87–93 (1973).Google Scholar
  56. 56.
    Klimesch, B., et al. The use of the scanning electron microscope (SEM) in the assessment of suspect case hardening. Practical Metallography 12:417–427 (1975).Google Scholar
  57. 57.
    Dudek, H. J., and Ziegler, G. Identification of phases in metallographically prepared specimens and fracture surfaces using the energy dispersive X-ray microanalysis. Practical Metallography 13:521–533 (1976).Google Scholar
  58. 58.
    Marlow, P., et al. Some replica techniques for the scanning electron microscope. Micron 2:139–147 (1970).Google Scholar
  59. 59.
    Wu, W., et al. A metallic replica technique for scanning electron microscopy. J. Materials Science 8:1670–1672 (Nov., 1973).CrossRefGoogle Scholar
  60. 60.
    Stirland, D. J. A replica method for the examination of large specimens in the scanning electron microscope. J. Microscopy 92:31–36 (Aug., 1970).CrossRefGoogle Scholar
  61. 61.
    Barnes, I. E. Replica models for the scanning electron microscope. A new impression technique. British Dental J. 133:337–342 (Oct. 17, 1972).CrossRefGoogle Scholar
  62. 62.
    Neville, G. Replica technique for the scanning electron microscope. J. Physics E. (Scientific Instruments) 5:743–744 (Aug., 1972).CrossRefGoogle Scholar
  63. 63.
    Eckert, J. D., and Caveney, R. J. A replica technique for conventional and scanning electron microscopy. J. Scientific Instruments 3:413–414 (May 1970).CrossRefGoogle Scholar
  64. 64.
    Wendler, B., and Neubauer, B. Increased information from microstructural replicas through the application of a scanning electron microscope. Practical Metallography 16:3–10 (1979).Google Scholar
  65. 65.
    Melford, D. A., and Whittington, K. R. Application of the scanning microanalyser to inclusion counting and identification. 4th Intl. Cong. on X-ray Optics and Microanalysis, Hermann Press, Paris, pp. 497–505 (1966).Google Scholar
  66. 66.
    Dörfler, G. Quantitative evaluation methods for alloy microstructures by microprobe analysis. Quantitative Electron Probe Micro-analysis. NBS Special Publ. 298, pp. 215–267 (Oct., 1968).Google Scholar
  67. 67.
    Waldman, J. et al. Electronprobe determination of phase volume fractions. Trans. ASM 62:818–819 (1969).Google Scholar
  68. 68.
    Jones, M. P. Quantitative determination of phase and stereological parameters by electron microprobe. Micron 2:125–138 (1970).Google Scholar
  69. 69.
    Jones, M. P. Automatic stereological analysis by electron probe X-ray microanalyser. In Quantitative Scanning Electron Microscopy. London: Academic Press, pp. 531–549 (1974).Google Scholar
  70. 70.
    White, E. W., et al. Particle size distributions of particulate aluminas from computer-processed SEM images. Scanning Electron Microscopy/1970. Chicago: IIT Research Institute, pp. 57–64 (1970).Google Scholar
  71. 71.
    Braggins, D. W., et al. The applications of image analysis techniques to scanning electron microscopy. Scanning Electron Microscopy/1971 (Part I). Chicago: IIT Research Institute, pp. 393–400 (1971).Google Scholar
  72. 72.
    Kupcis, O. A.; Woo, O. T.; and Ramaswami, B. The determination of size and spacing of second-phase particles by scanning electron microscopy. Materials Science and Engineering 9:47–49 (1972).CrossRefGoogle Scholar
  73. 73.
    Johari, O., and Samudra, A. V. Measurement of retained austenite using scanning electron metallography. Micron 3:238–246 (1972).Google Scholar
  74. 74.
    Gibbard, D. W. The application of image analysis techniques to scanning electron microscopy and microanalysis. In Quantitative Scanning Electron Microscopy. London: Academic Press, pp. 75–92 (1974).Google Scholar
  75. 75.
    Ekelund, S., and Werlefors, T. A system for the quantitative characterization of microstructures by combined image analysis and X-ray discrimination in the scanning electron microscope. Scanning Electron Microscopy/1976 (Part III). Chicago: IIT Research Institute, pp. 417–424 (1976).Google Scholar
  76. 76.
    Baumgartl, S., and Bühler, H. E. Quantitative microstructural analysis by means of focussed electron beams. Practical Metallography. 13:263–288 (1976).Google Scholar
  77. 77.
    Werlefors, T., and Ekelund, S. Automatic multiparameter characterization of non-metallic inclusions-an evaluation of PASEM. Scandinavian J. of Metallurgy 7:60–70 (1978).Google Scholar
  78. 78.
    Werlefors, T., and Eskilsson, C. Automatic multiparameter characterization of non-metallic inclusions—practical applications of PASEM in the study of inclusions in steel. Scandinavian J. of Metallurgy 7:215–222 (1978).Google Scholar
  79. 79.
    Stott, W. R., and Chatfield, E. J. A precision SEM image analysis system with full-feature EDXA characterization. Scanning Electron Microscopy/1979/II. AMF O’Hare, IL: SEM Inc., pp. 53–59 (1979).Google Scholar
  80. 80.
    Werlefors, T., Eskilsson, C., and Ekelund, S. A method for the automatic assessment of carbides in high speed steels with a computer controlled scanning electron microscope. Scandinavian J. of Metallurgy 8:221–231 (1979).Google Scholar
  81. 81.
    Lee, R. J., and Kelly, J. F. Overview of SEM-based automated image analysis. Scanning Electron Microscopy/1980, Part I. Chicago, IL: SEM Inc., pp. 303–310 (1980).Google Scholar
  82. 82.
    Lee, R. J.; Spitzig, W. A.; Kelly, J. F.; and Fisher, R. M. Quantitative metallography by computer-controlled scanning electron microscopy. J. of Metals 33:20–25 (Mar., 1981).Google Scholar
  83. 83.
    Werlefors, T. PASEM (the particle analysing scanning electron microscope) applied to the study of non-metallic inclusions in steel. Swedish Symposium on Non-Metallic Inclusions in Steel. Hagfors, Sweden: Uddeholms AB, pp. 234–241 (1981).Google Scholar
  84. 84.
    Kim, C. et al. A new procedure for determining volume fraction of primary carbides in high-speed and related tool steels. Met. Trans. 13A:185–191 (Feb., 1982).Google Scholar
  85. 85.
    Isaacs, A. M. Limits to quantitation in particle analysis: Some empirical determinations. Microbeam Analysis1983. San Francisco, CA: San Francisco Press, Inc., pp. 202–208 (1983).Google Scholar
  86. 86.
    Jeulin, D. Morphological SEM picture processing. J. Microsc. Spectrosc. Electron. 8:1–18 (1983).Google Scholar
  87. 87.
    Lee, R. J., et al. Quantitative metallography by computer-controlled scanning electron microscopy. Practical Metallography 21:27–41 (1984).Google Scholar

Copyright information

© Van Nostrand Reinhold Company Inc. 1986

Authors and Affiliations

  • George F. Vander Voort
    • 1
  1. 1.Carpenter Technology Corp.USA

Personalised recommendations