Specific-Heat Anomalies

  • E. S. R. Gopal
Part of the The International Cryogenics Monograph Series book series (INCMS)


The idea that the specific heats of some materials show abnormal variations at certain temperatures was introduced as early as Chapter 1, and several examples of such uncommon behavior were mentioned in Chapters 3 to 6. Before embarking upon a systematic classification of such unusual specific-heat variations, it is worthwhile to digress a little upon what constitutes anomalous behavior. Any definition of an anomaly is to some extent negative in that it invokes the standards for normal behavior, which obviously depend upon the progress of our knowledge concerning the thermal properties of physical systems. Thus, deviations from Einstein and Debye models of specific heats, at one time considered to be anomalous variations of specific heats, are now taken as normal in the light of detailed lattice calculations. Similarly, the unexpected behavior of the specific heat of a superconductor is now viewed as a simple consequence of the onset of superconductivity in the electronic system. The possibility always exists that the puzzles of one era may become clarified in the succeeding years. Consequently, it is best to adopt as a pragmatic simplification that, in most substances and in many simple theoretical models of solids, the specific heat decreases continuously as the temperature is lowered.


Heat Capacity Molecular Rotation Cooperative Phenomenon Soviet Phys Cooperative Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Parkinson, Rept. Progr. Phys. 21, 226 (1958).CrossRefGoogle Scholar
  2. 2.
    L. A. K. Staveley, K. R. Hart, and W. I. Tupman, Dis. Faraday Soc. 15, 130 (1953).CrossRefGoogle Scholar
  3. 2a.
    G. N. Lewis, M. Randall, K. S. Pitzer, and L. Brewer, Thermodynamics, McGraw Hill, New York, 1961, chapter 25.Google Scholar
  4. 3.
    J. F. Cochran, Ann. Phys. (N.Y.) 19, 186 (1962).CrossRefGoogle Scholar
  5. 4.
    H. Lipson, Progr. Metal Phys. 2, 1 (1950).CrossRefGoogle Scholar
  6. 4a.
    T. Muto and Y. Takagi, Solid State Phys. 1, 193 (1955).CrossRefGoogle Scholar
  7. 4b.
    L. Guttman, Solid State Phys. 3, 145 (1956).CrossRefGoogle Scholar
  8. 4c.
    E. W. Elcock, Order-Disorder Phenomena, Methuen, London, 1956.Google Scholar
  9. 5.
    H. Moser, Phys. Z. 37, 737 (1936).Google Scholar
  10. 5a.
    C. Sykes and H. Wilkinson, J. Inst. Metals 61, 223 (1937).Google Scholar
  11. 5b.
    C. W. Garland, Phys. Rev. 135, A1696 (1964).CrossRefGoogle Scholar
  12. 6.
    K. Clusius, Z. phys. Chem. B3, 41 (1929).Google Scholar
  13. 6a.
    K. Clusius and A. Perlick, Z. phys. Chem. B24, 313 (1934).Google Scholar
  14. 6b.
    J. H. Colwell, E. K. Gill, and J. A. Morrison, J. Chem. Phys. 36, 2223 (1962).CrossRefGoogle Scholar
  15. 7.
    H. N. V. Temperley, Changes of State, Cleaver-Hume, London, 1956.Google Scholar
  16. 8.
    E. T. Jaynes, Ferroelectricity, Princeton University Press, Princeton, 1953.Google Scholar
  17. 8a.
    A. F. Devonshire, Advan. Phys. 3, 85 (1954).CrossRefGoogle Scholar
  18. 8b.
    P. W. Forsberg, Handbuch der Physik, XVII, 264 (1956).CrossRefGoogle Scholar
  19. 8c.
    W. Kanzig, Solid State Phys. 4, 1 (1957).CrossRefGoogle Scholar
  20. 8d.
    H. D. Megaw, Ferroelectricity in Crystals, Methuen, London, 1957.Google Scholar
  21. 8e.
    F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon, Oxford, 1962.Google Scholar
  22. 8f.
    W. J. Merz, Progr. Dielectrics 4, 101 (1962).Google Scholar
  23. 8g.
    A. F. Devonshire, Rept. Progr. Phys. 27, 1 (1964).CrossRefGoogle Scholar
  24. 9.
    J. Mendelssohn and K. Mendelssohn, Nature 144, 595 (1939).CrossRefGoogle Scholar
  25. 9a.
    C. C. Stephenson and J. G. Hooley, J. Am. Chem. Soc. 66, 1397 (1944).CrossRefGoogle Scholar
  26. 10.
    A. von Arx and W. Bantle, Helv. phys. acta 16, 211 (1943).Google Scholar
  27. 10a.
    B. A. Strukov, Soviet Phys. Solid State 6, 2278 (1965).Google Scholar
  28. 10b.
    J. Grindlay, Phys. Letters 18, 239 (1965).CrossRefGoogle Scholar
  29. 11.
    W. Cochran, Advan. Phys. 9, 387 (1960);CrossRefGoogle Scholar
  30. 11a.
    W. Cochran, Advan. Phys. 10, 401 (1961).CrossRefGoogle Scholar
  31. 12.
    F. H. Spedding, S. Levigold, A. H. Daane, and L. D. Jennings, Progr. Low Temp. Phys. 2, 368 (1957).CrossRefGoogle Scholar
  32. 13.
    K. P. Belov, R. Z. Levitin, and S. A. Nikitin, Soviet Phys. Uspekhi 7, 179 (1964).CrossRefGoogle Scholar
  33. 13a.
    K. Yosida, Progr. Low Temp. Phys. 4, 265 (1964).CrossRefGoogle Scholar
  34. 13b.
    W. C. Koehler, J. Appl. Phys. 36, 1078 (1965).CrossRefGoogle Scholar
  35. 14.
    D. H. Parkinson, F. E. Simon, and F. H. Spedding, Proc. Roy. Soc. (London), Ser. A 207, 137 (1951).CrossRefGoogle Scholar
  36. 14a.
    O. H. Parkinson and L. M. Roberts, Froc. Phys. Soc. (London), Ser. B 70, 471 (1957).CrossRefGoogle Scholar
  37. 14b.
    O. V. Lounasmaa, Phys. Rev. 133, A502 (1964).CrossRefGoogle Scholar
  38. 15.
    C. J. McHargue and H. L. Yakel, Acta Met. 8, 637 (1960).CrossRefGoogle Scholar
  39. 15a.
    M. K. Wilkinson, H. R. Child, C. J. McHargue, W. C. Koehler, and E. O. Wollan, Phys. Rev. 122, 1409 (1961).CrossRefGoogle Scholar
  40. 15b.
    K. A. Gschneidner, R. O. Elliot, and R. R. McDonald, J. Phys. Chem. Solids 23, 555 (1962).CrossRefGoogle Scholar
  41. 16.
    C. S. Barrett and M. Cohen, in: Phase Transformations in Solids (R. Smoluchowski, J. E. Mayer, and W. A. Weyl, editors), Wiley, New York, 1951, chapters 13 and 17.Google Scholar
  42. 16a.
    M. A. Jaswon, Research 11, 315 (1958).Google Scholar
  43. 17.
    R. M. Moon, J. W. Cable, and W. C. Koehler, J. Appl. Phys. 35, 1041 (1964).CrossRefGoogle Scholar
  44. 17a.
    J. W. Cable, R. M. Moon, W. C. Koehler, and E. O. Wollan, Phys. Rev. Letters 12, 553 (1964).CrossRefGoogle Scholar
  45. 18.
    M. Griffel, R. E. Skochdopole, and F. H. Spedding, Phys. Rev. 93, 657 (1954);CrossRefGoogle Scholar
  46. 18a.
    M. Griffel, R. E. Skochdopole, and F. H. Spedding, J. Chem. Phys. 23, 2258 (1955);CrossRefGoogle Scholar
  47. 18b.
    M. Griffel, R. E. Skochdopole, and F. H. Spedding, J. Chem. Phys. 25, 75 (1956).CrossRefGoogle Scholar
  48. 19.
    M. Fixman, J. Chem. Phys. 36, 1957 (1962).CrossRefGoogle Scholar
  49. 20.
    M. I. Bagatskii, A. V. Voronel’, and V. G. Gusak, Soviet Phys. JETP 16, 517 (1963).Google Scholar
  50. 20a.
    A. V. Voronel’, Ya. R. Chashkin, V. A. Popov, and V. G. Simkin, Soviet Phys. JETP 18, 568 (1964).Google Scholar
  51. 20b.
    W. A. Little and M. Moldover, Proceedings of the Ninth International Conference on Low Temperature Physics (Columbus, Ohio, 1964), Plenum Press, New York, 1965, p. 653.Google Scholar
  52. 21.
    M. E. Fisher, Phys. Rev. 136, A1599 (1964).CrossRefGoogle Scholar
  53. 22.
    M. Ya. Azbel, A. V. Voronel’, and M. Sh. Giterman, Soviet Phys. JETP 19, 457 (1964).Google Scholar
  54. 22a.
    C. N. Yang and C. P. Yang, Phys. Rev. Letters 13, 303 (1964).CrossRefGoogle Scholar
  55. 22b.
    R. B. Griffiths, Phys. Rev. Letters 14, 623 (1965).CrossRefGoogle Scholar
  56. 23.
    C. E. Chase, R. C. Williamson, and L. Tisza, Phys. Rev. Letters 13, 467 (1964).CrossRefGoogle Scholar
  57. 24.
    O. K. Rice, J. Chem. Phys. 22, 1535 (1954).CrossRefGoogle Scholar
  58. 24a.
    C. Domb, J. Chem. Phys. 25, 783 (1956).CrossRefGoogle Scholar
  59. 25.
    T. L. Hill, Statistical Mechanics, McGraw-Hill, New York, 1956, chapters 5 and 7.Google Scholar
  60. 26.
    G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 353 (1953).CrossRefGoogle Scholar
  61. 26a.
    H. S. Green and C. A. Hurst, Order-Disorder Phenomena, Interscience, New York, 1964.Google Scholar
  62. 27.
    H. B. Rosenstock, J. Chem. Phys. 35, 420 (1961).CrossRefGoogle Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • E. S. R. Gopal
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations