Heat Capacity of Liquids

  • E. S. R. Gopal
Part of the The International Cryogenics Monograph Series book series (INCMS)


Among the three states of aggregation, solids ⥨ liquids ⥨ gases, less is known about the liquid state than about the other two. To some extent this is not surprising, because the limiting cases of solids and gases are sufficiently clear-cut and simple to allow schematic models to represent their behavior. In gases, the molecules are far apart and have no spatial correlation. In solids, the atoms are arranged in lattice sites. Such situations can be analyzed to a first approximation on the basis of idealized models, perfect gases, or perfect lattices, and these elementary calculations may then be refined, if necessary. The difficulty in developing an adequate theory of the liquid state is that such convenient starting points are not available. Near the freezing point, liquids exhibit many of the characteristics of solids, whereas near the boiling point the behavior of liquids is to some extent similar to that of gases.1 In liquids, the atomic arrangement in the immediate vicinity of any atom is partially ordered (short-range order), but at great distances the arrangement is completely random (long-range disorder). The absence of long-range order distinguishes a liquid from a solid, while the presence of short-range order differentiates between a liquid and a gas.


Heat Capacity Liquid Helium Saturated Vapor Pressure Glassy State Fermi Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Frenkel, Kinetic Theory of Liquids, Dover, New York, 1954.Google Scholar
  2. 2.
    J. S. Rowlinson, Liquids and Liquid Mixtures, Butterworth, London, 1959.Google Scholar
  3. 3.
    E. A. Guggenheim, Mixtures, Clarendon, Oxford, 1952.Google Scholar
  4. 4.
    K. Mendelssohn, Handbuch der Physik, XV (2), 370 (1956).CrossRefGoogle Scholar
  5. 4a.
    K. Mendelssohn, J. Wilks, Rept. Progr. Phys. 20, 38 (1957).CrossRefGoogle Scholar
  6. 4b.
    K. R. Atkins, Liquid Helium, Cambridge University Press, Cambridge, 1957.Google Scholar
  7. 5.
    Liquid Helium, Proceedings of the International Summer School “Enrico Fermi”, (Varenna, 1961, G. Careri, ed.), Academic, New York, 1963.Google Scholar
  8. 5a.
    J. Wilks, Liquid Helium, Clarendon, Oxford, 1966.Google Scholar
  9. 6.
    H. C. Kramers, J. Wasscher, and C. J. Gorter, Physica 18, 329 (1952).CrossRefGoogle Scholar
  10. 6a.
    R. W. Hill and O. V. Lounasmaa, Phil. Mag. 2, 143 (1957).CrossRefGoogle Scholar
  11. 6b.
    J. Wiebes, C. G. Niels-Hakkenberg, and H. C. Kramers, Physica 23, 625 (1957).CrossRefGoogle Scholar
  12. 7.
    H. C. Kramers, Progr. Low Temp. Phys. 2, 59 (1957).CrossRefGoogle Scholar
  13. 8.
    P. J. Bendt, R. D. Cowan, and J. L. Yarnell, Phys. Rev. 113, 1386 (1959).CrossRefGoogle Scholar
  14. 9.
    M. J. Buckingham and W. M. Fairbank, Progr. Low Temp. Phys. 3, 80 (1961).CrossRefGoogle Scholar
  15. 10.
    J. C. Daunt (ed.), Helium Three, Ohio State University Press, Columbus, 1960.Google Scholar
  16. 11.
    E. R. Grilly and E. F. Hammel, Progr. Low Temp. Phys. 3, 113 (1961).CrossRefGoogle Scholar
  17. 11a.
    N. Bernades and D. F. Brewer, Rev. Mod. Phys. 34, 190 (1962).CrossRefGoogle Scholar
  18. 11b.
    D. F. Brewer, Progr. Cryogenics 4, 25 (1964).Google Scholar
  19. 12.
    G. de Vries and J. G. Daunt, Phys. Rev. 92, 1572 (1953);CrossRefGoogle Scholar
  20. 12a.
    G. de Vries and J. G. Daunt, Phys. Rev. 93, 631 (1954).CrossRefGoogle Scholar
  21. 12b.
    T. R. Roberts and S. G. Sydoriak, Phys. Rev. 93, 1418 (1954).CrossRefGoogle Scholar
  22. 12c.
    D. W. Osborne, B. M. Abraham, and B. Weinstock, Phys. Rev. 94, 202 (1954).CrossRefGoogle Scholar
  23. 13.
    L. Goldstein, Phys. Rev. 112, 1465 (1958).CrossRefGoogle Scholar
  24. 14.
    D. F. Brewer, J. G. Daunt, and A. K. Sreedhar, Phys. Rev. 115, 836 (1959).CrossRefGoogle Scholar
  25. 14a.
    M. Strongin, G. O. Zimmerman, and H. A. Fairbank, Phys. Rev. Letters, 6, 404 (1961).CrossRefGoogle Scholar
  26. 14b.
    A. C. Anderson, G. F. Salinger, W. A. Steyert, and J. C. Wheatley, Phys. Rev. Letters 7, 295 (1961).CrossRefGoogle Scholar
  27. 15.
    A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys. 22, 329 (1959).CrossRefGoogle Scholar
  28. 16.
    V. P. Peshkov, Soviet Phys. JETP 19, 1023 (1964).Google Scholar
  29. 17.
    E. S. R. Gopal, J. Sci. Indus. Res. 23, 496 (1964).Google Scholar
  30. 17a.
    W. R. Abel, A. C. Anderson, W. C. Black, and J. C. Wheatley, Phys. Rev. Letters 14, 129 (1965).CrossRefGoogle Scholar
  31. 18.
    K. Huang, Statistical Mechanics, Wiley, New York, 1963, pp.262, 384.Google Scholar
  32. 19.
    I. Prigogine, A. Bellemans, and V. Mathot, Molecular Theory of Solutions, North Holland, Amsterdam, 1957, chapters 18 and 19.Google Scholar
  33. 20.
    J. J. M. Beenakker and K. W. Taconis, Progr. Low Temp. Phys. 1, 108 (1955).CrossRefGoogle Scholar
  34. 20a.
    K. W. Taconis and R. de Bruyn Ouboter, Progr. Low Temp. Phys. 4, 38 (1964).CrossRefGoogle Scholar
  35. 21.
    R. O. Davies and G. O. Jones, Advan. Phys. 2, 370 (1953).CrossRefGoogle Scholar
  36. 22.
    J. M. Stevels, Handbuch der Physik, XIII, 510 (1962).CrossRefGoogle Scholar
  37. 23.
    J. Wilks, Third Law of Thermodynamics, Oxford University Press, Oxford, 1961, chapter 5.Google Scholar
  38. 24.
    F. Seitz, Modern Theory of Solids, McGraw-Hill, New York, 1940, chapter 14.Google Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • E. S. R. Gopal
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations