Electronic Specific Heat

  • E. S. R. Gopal
Part of the The International Cryogenics Monograph Series book series (INCMS)


Metals are characterized by their high electrical and thermal conductivities at ordinary temperatures. When the discrete nature of electric charges became clear, by about 1900, it was also realized that freely moving electrons were the charge carriers in metals. Drude, Lorentz, and others applied the methods used in the kinetic theory of gases to explain how these electrons were responsible for the observed high thermal and electrical conductivities.1


Heat Capacity Fermi Surface Meissner Effect Indium Antimonide Electronic Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Olsen, Electron Transport in Metals, Interscience, New York, 1962.Google Scholar
  2. 2.
    M. Born, Atomic Physics, Blackie, London, 1962, chapter 8.Google Scholar
  3. 2a.
    D. ter Haar, Elements of Statistical Mechanics, Rinehart, New York, 1954, chapter 4.Google Scholar
  4. 3.
    C. Kittel, Solid State Physics, Wiley, New York, 1956, chapters 11 and 13.Google Scholar
  5. 3a.
    A. J. Dekker, Solid State Physics, Prentice-Hall, New York, 1957, chapters 10 and 13.Google Scholar
  6. 3b.
    L. V. Azaroff and J. J. Brophy, Electronic Processes in Materials, McGraw-Hill, New York, 1963, chapters 7, 8, and 10.Google Scholar
  7. 4.
    J. M. Ziman, Contemp. Phys. 3, 241, 321, 401 (1962);CrossRefGoogle Scholar
  8. 4a.
    J. M. Ziman, Contemp. Phys. 4, 1, 81 (1963).Google Scholar
  9. 5.
    W. A. Harrison and M. B. Webb (editors), The Fermi Surface, Wiley, New York, 1960.Google Scholar
  10. 6.
    E. C. Stoner, Phil. Mag. 21, 145 (1936).Google Scholar
  11. 7.
    R. E. Gaumer and C. V. Heer, Phys. Rev. 118, 955 (1960).CrossRefGoogle Scholar
  12. 8.
    D. H. Parkinson, Rept. Progr. Phys. 21, 226 (1958).CrossRefGoogle Scholar
  13. 9.
    J. G. Daunt, Progr. Low Temp. Phys. 1, 202 (1955).CrossRefGoogle Scholar
  14. 10.
    P. H. Keesom and N. Pearlman, Handbuch der Physik, XIV(I), 282 (1956).CrossRefGoogle Scholar
  15. 11.
    D. Pines, Solid State Phys. 1, 367 (1955).CrossRefGoogle Scholar
  16. 11a.
    S. Raimes, Rept. Progr. Phys. 20, 1 (1957).CrossRefGoogle Scholar
  17. 12.
    G. V. Chester, Advan. Phys. 10, 357 (1961).CrossRefGoogle Scholar
  18. 13.
    P. L. Taylor, Phys. Rev. 131, 1995 (1963).CrossRefGoogle Scholar
  19. 13a.
    S. K. Koenig, Phys. Rev. 135, A 1693 (1964).CrossRefGoogle Scholar
  20. 14.
    N. F. Mott, Rept. Progr. Phys. 25, 218 (1962);CrossRefGoogle Scholar
  21. 14a.
    N. F. Mott, Advan. Phys. 13, 325 (1964).CrossRefGoogle Scholar
  22. 15.
    W. H. Lien and N. E. Phillips, Phys. Rev. 133, A1370 (1964).CrossRefGoogle Scholar
  23. 16.
    W. Hume-Rothery, Electrons, Atoms, Metals, and Alloys, Iliffe, London, 1955, chapter 29.Google Scholar
  24. 17.
    F. E. Hoare, in: Electronic Structure and Alloy Chemistry of Transition Elements, P. A. Beck (ed.), Interscience, New York, 1963, p. 29.Google Scholar
  25. 18.
    G. J. van den Berg, Progr. Low Temp. Phys. 4, 194 (1964).CrossRefGoogle Scholar
  26. 19.
    J. E. Zimmerman and F. E. Hoare, J. Phys. Chem. Solids 17, 52 (1960).CrossRefGoogle Scholar
  27. 19a.
    J. E. Zimmerman and H. Sato, J. Phys. Chem. Solids 21, 71 (1961).CrossRefGoogle Scholar
  28. 19b.
    J. P. Franck, F. D. Manchester, and D. L. Martin, Proc. Roy. Soc. (London), Ser. A 263, 494 (1961).CrossRefGoogle Scholar
  29. 20.
    A. W. Overhauser, J. Phys. Chem. Solids 13, 71 (1960).CrossRefGoogle Scholar
  30. 20a.
    W. Marshall, Phys. Rev. 118, 1519 (1960).CrossRefGoogle Scholar
  31. 20b.
    K. P. Gupta, C. H. Cheng, and P. A. Beck, J. Phys. Chem. Solids 25, 73 (1963).CrossRefGoogle Scholar
  32. 21.
    V. A. Johnson and K. Lark-Horovitz, Progr. Low Temp. Phys. 2, 187 (1957).CrossRefGoogle Scholar
  33. 22.
    P. H. Keesom and G. Seidel, Phys. Rev. 113, 33 (1959).CrossRefGoogle Scholar
  34. 23.
    D. Shoenberg, Superconductivity, Cambridge University Press, Cambridge, 1952.Google Scholar
  35. 23a.
    E. A. Lynton, Superconductivity, Methuen, London, 1962.Google Scholar
  36. 24.
    D. C. Rorer, H. Meyer, and R. C. Richardson, Z. Naturforsch. 18a, 130 (1963).Google Scholar
  37. 25.
    W. S. Corak, B. B. Goodman, C. B. Satterthwaite, and A. Wexler, Phys. Rev. 102, 656 (1956).CrossRefGoogle Scholar
  38. 26.
    J. Eisenstein, Rev. Mod. Phys. 26, 277 (1954).CrossRefGoogle Scholar
  39. 26a.
    B. Serin, Progr. Low Temp. Phys. 1, 138 (1955).CrossRefGoogle Scholar
  40. 27.
    J. Bardeen and J. R. Schrieffer, Progr. Low Temp. Phys. 3, 170 (1961).CrossRefGoogle Scholar
  41. 27a.
    J. M. Blatt, Theory of Superconductivity, Academic, New York, 1964.Google Scholar
  42. 27b.
    G. Rikayzen, Theory of Superconductivity, Interscience, New York, 1965.Google Scholar
  43. 27c.
    J. R. Schrieffer, Theory of Superconductivity, Benjamin, New York, 1965.Google Scholar
  44. 28.
    R. R. Hake (in press).Google Scholar
  45. 29.
    T. McConville and B. Serin, Phys. Rev. Letters 13, 365 (1964).CrossRefGoogle Scholar
  46. 29a.
    B. B. Goodman, Phys. Letters 12, 6 (1964).CrossRefGoogle Scholar
  47. 30.
    Proceedings of the IBM Conference on Superconductivity, IBM J. Res. Dev. 6, 1–125 (1962). Proceedings of the Colgate Conference on Superconductivity, Rev. Mod. Phys. 36, 1–331 (1964).Google Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • E. S. R. Gopal
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations