Advertisement

Abstract

One of the earliest empirical generalizations concerning the specific heat of solids was enunciated by Dulong and Petit in 1819. Its theoretical justification was advanced by Boltzmann in 1871, and in 1907 Einstein showed why it failed at low temperatures. These dates are among the principal landmarks in the study of specific heats. To appreciate the significance of these developments, consider the specific heats of several common elements at room temperatures, as collected in Table 2.I. The specific heat per gram of the element varies considerably, being small for the elements of high atomic weight and large for those of low atomic weight. However, the heat capacity per gram-atom of all of them is nearly equal to 6.2 cal/moledeg,
Table 2.1

Specific Heat of Solid Elements at Room Temperature1

    

Element

   
 

Bi

Pb

Au

Pt

Sn

Ag

Zn

CP

0.03

0.03

0.03

0.03

0.06

0.06

0.09

Atomic

       

weight

209

207.2

197

195.1

118.7

107.9

65.4

cp

6.22

6.43

6.1

6.21

6.6

6.03

6.14

 

Cu

Fe

Al

Si

B

C(gr)

C(di)

cp

0.09

0.11

0.22

0.18

0.26

0.22

0.12

Atomic

       

weight

63.6

55.9

27

28.1

10.8

12

12

cP

5.92

6.14

5.83

5

2.84

2.6

1.44

Table 2.II. Molar Heat Capacity of Compounds1 (in cal/mole-deg)

    

Compound

  
 

NaCl

KBr

AgCl

PbS CuS Ag2S

PbCl2

CaF2

cï…

11.93

12.25

12.15

12.01 12.33 17.83

18.05

16.56

which is the rule found by Dulong and Petit in 1819. A closer inspection shows that for “light and hard” elements (silicon, boron, and carbon) the atomic heat capacity falls much below the Dulong-Petit value.

Keywords

Heat Capacity Debye Temperature Lattice Vibration Molar Heat Capacity Solid State Phys 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Eucken, Handbuch der experimental Physik, VIII (I) (1929), chapter 5.Google Scholar
  2. 2.
    A. J. Rutgers, Physical Chemistry, Interscience, New York, 1954, chapters 11 and 33.Google Scholar
  3. 3.
    J. C. Slater, Introduction to Chemical Physics, McGraw-Hill, New York, 1939, chapters 3 and 4.Google Scholar
  4. 4.
    Landolt-Bornstein physikalish chemische Tabellen, Springer-Verlag, Berlin, ed. 5, suppl. 1, p.702 (1927); ed. 6, Vol. 2, Part 4, p.736 (1961).Google Scholar
  5. 5.
    J. Sherman and R. B. Ewell, J. Phys. Chem. 46, 641 (1942).CrossRefGoogle Scholar
  6. 5a.
    D. R. Stull and F. D. Mayfield, Ind. Eng. Chem. 35, 639 (1943).CrossRefGoogle Scholar
  7. 5b.
    H. Zeise, Thermodynamik, Vol. 3, Hirzel, Leipzig, 1954.Google Scholar
  8. 5c.
    W. C. Overton and J. H. Hancock, Tables of Einstein Functions, U.S. Naval Res. Lab. Rept. No. 5502 (1960).Google Scholar
  9. 5d.
    J. Hilsenrath and G. G. Ziegler, Tables of Einstein Functions, Nat. Bur. Std. Monograph No. 49 (1962).Google Scholar
  10. 6.
    J. de Launay, Solid State Phys. 2, 219 (1956).Google Scholar
  11. 7.
    R. F. S. Hearmon, Introduction to Applied Anisotropic Elasticity, Oxford University Press, Oxford, 1961.Google Scholar
  12. 8.
    M. J. P. Musgrave, Rept. Progr. Phys. 22, 74 (1959);CrossRefGoogle Scholar
  13. 8a.
    M. J. P. Musgrave, Progr. Solid Mech. 2, 63 (1961).Google Scholar
  14. 9.
    H. Weyl, Math. Ann. 71, 441 (1911).CrossRefGoogle Scholar
  15. 9a.
    R. D. Courant, Math. Ztschr. 7, 14 (1920).CrossRefGoogle Scholar
  16. 9b.
    W. Ledermann, Proc. Roy. Soc. (London), Ser. A. 182, 362 (1944).CrossRefGoogle Scholar
  17. 9c.
    R. E. Peierls, Proc. Nat. Inst. Sci. India 20A, 121 (1954).Google Scholar
  18. 10.
    M. Blackman, Handbuch der Physik, VII (I), 325 (1955).CrossRefGoogle Scholar
  19. 11.
    J. A. Beattie, J. Math. Phys. (MIT), 6, 1 (1926).Google Scholar
  20. 12.
    G. F. Newell, J. Chem. Phys. 23, 2431 (1955).CrossRefGoogle Scholar
  21. 12a.
    L. S. Kothari and V. K. Tewary, J. Chem. Phys. 38, 417 (1963).CrossRefGoogle Scholar
  22. 12b.
    B. J. C. van der Hoeven and P. H. Keesom, Phys. Rev. 130, 1318 (1963).CrossRefGoogle Scholar
  23. 13.
    E. Schrödinger, Handbuch der Physik, X, 275 (1926).Google Scholar
  24. 14.
    D. Bijl, Progr. Low Temp. Phys. 2, 395 (1957).CrossRefGoogle Scholar
  25. 15.
    J. D. Filby and D. L. Martin, Proc. Roy. Soc. (London), Ser. A 276, 187 (1963).CrossRefGoogle Scholar
  26. 16.
    W. T. Berg and J. A. Morrison, Proc. Roy. Soc. (London), Ser. A 242, 467 (1957).CrossRefGoogle Scholar
  27. 17.
    M. Blackman, Rept. Progr. Phys. 8, 11 (1941).CrossRefGoogle Scholar
  28. 18.
    L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York, 1954.Google Scholar
  29. 19.
    G. H. Wannier, Elements of Solid State Theory, Cambridge University Press, Cambridge, 1959, chapter 3.Google Scholar
  30. 20.
    L. S. Kothari and K. Singwi, Solid State Phys. 8, 109 (1959).CrossRefGoogle Scholar
  31. 21.
    A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (suppl. 4 to Solid State Physics), Academic Press, New York, 1963.Google Scholar
  32. 22.
    W. Cochran, Rept. Progr. Phys. 26, 1 (1963).CrossRefGoogle Scholar
  33. 23.
    A. E. Dixon, A. D. B. Woods, and B. N. Brockhouse, Proc. Phys. Soc. (London) 81, 973 (1963).CrossRefGoogle Scholar
  34. 23a.
    G. Gilat and G. Dolling, Phys. Letters 8, 304 (1964).CrossRefGoogle Scholar
  35. 24.
    B. Dayal and S. P. Singh, Proc. Phys. Soc. (London) 76, 777 (1960).CrossRefGoogle Scholar
  36. 24a.
    B. Dayal and B. B. Tripathi, Proc. Phys. Soc. (London) 11, 303 (1961).Google Scholar
  37. 25.
    G. Leibfried, Handbuch der Physik, VII (I), 104 (1955).CrossRefGoogle Scholar
  38. 26.
    R. G. Chambers, Proc. Phys. Soc. (London) 78, 941 (1961).CrossRefGoogle Scholar
  39. 27.
    S. O. Lundqvist, V. Lundstrom, E. Tenerz, and I. Waller, Ark. Fysik 15, 193 (1959).Google Scholar
  40. 28.
    C. B. Walker, Phys. Rev. 103, 547 (1956).CrossRefGoogle Scholar
  41. 29.
    G. Liebfried and W. Ludwig, Solid State Phys. 12, 275 (1961).CrossRefGoogle Scholar
  42. 29a.
    T. H. K. Barron and M. L. Klein, Phys. Rev. 127, 1997 (1962).CrossRefGoogle Scholar
  43. 29b.
    R. A. Cowley, Advan. Phys. 12, 421 (1963).CrossRefGoogle Scholar
  44. 30.
    F. H. Herbstein, Advan. Phys. 10, 313 (1961).CrossRefGoogle Scholar
  45. 31.
    J. R. Partington, Advanced Treatise on Physical Chemistry, Vol. 3, Longmans-Green, London, 1952, section 9N.Google Scholar
  46. 32.
    G. A. Alers and J. R. Neighbours, Rev. Mod. Phys. 31, 675 (1959).CrossRefGoogle Scholar
  47. 32a.
    J. L. Feldman, Proc. Phys. Soc. (London) 84, 361 (1964).CrossRefGoogle Scholar
  48. 33.
    O. L. Anderson, J. Phys. Chem. Solids 12, 41 (1959).CrossRefGoogle Scholar
  49. 33a.
    P. Flubacher, A. I. Leadbetter, J. A. Morrison, and B. P. Stoicheff, J. Phys. Chem. Solids 12, 53 (1959).CrossRefGoogle Scholar
  50. 33b.
    H. B. Rosenstock, J. Phys. Chem. Solids 23, 659 (1962).CrossRefGoogle Scholar
  51. 34.
    E. Grüneisen, Handbuch der Physik X, 1 (1926).Google Scholar
  52. 34a.
    J. K. Roberts, and A. R. Miller, Heat and Thermodynamics, Blackie, London, 1960, chapter 22.Google Scholar
  53. 35.
    C. Domb in Proceedings of the Eighth International Conference on Low Temperature Physics (London, 1962, R. O. Davies, editor), Butterworth, London, 1963, p.385.Google Scholar
  54. 35a.
    J. G. Collins and G. K. White, Progr. Low Temp. Phys. 4, 450 (1964).CrossRefGoogle Scholar
  55. 36.
    S. S. Mitra, Solid State Phys. 13, 1 (1962).CrossRefGoogle Scholar
  56. 36a.
    F. A. Johnson and R. Loudon, Proc. Roy. Soc. (London), Ser. A 281, 274 (1964).CrossRefGoogle Scholar
  57. 37.
    W. A. Wooster, Diffuse X-Ray Reflections from Crystals, Clarendon, Oxford, 1962.Google Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • E. S. R. Gopal
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations