Advertisement

Elementary Concepts of Specific Heats

  • E. S. R. Gopal
Part of the The International Cryogenics Monograph Series book series (INCMS)

Abstract

The specific heat of a substance is defined as the quantity of heat required to raise the temperature of a unit mass of the substance by a unit degree of temperature. To some extent, the specific heat depends upon the temperature at which it is measured and upon the changes that are allowed to take place during the rise of temperature. If the properties x, y,..., are held constant when a heat input dQ raises the temperature of unit mass of the substance by dT, then
$$ {C_{x,y,...}} = \frac{{\lim }}{{dT \to 0}}{\left( {\frac{{dQ}} {{dT}}} \right)_{x,y,...}} $$
(1.1)
The specific heat, sometimes called the heat capacity, is in general a positive quantity. In the absence of any rigid convention, it seems best to use the term specific heat when referring to 1 g of the material and the term heat capacity when a more general amount of the material, i.e., a gram-atom or a gram-molecule, is involved.

Keywords

Heat Capacity Partition Function Isothermal Compressibility Molar Heat Capacity Elementary Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. W. Zemansky, Heat and Thermodynamics, McGraw-Hill, New York, 1957.Google Scholar
  2. 1a.
    J. K. Roberts and A. R. Miller, Heat and Thermodynamics, Blackie, London, 1960.Google Scholar
  3. 2.
    H. B. Huntington, Solid State Phys. 7, 213 (1958).CrossRefGoogle Scholar
  4. 2a.
    R. F.S. Hearmon, Introduction to Applied Anisotropic Elasticity, Oxford University Press, Oxford, 1961.Google Scholar
  5. 3.
    R. Viswanathan and E. S. Raja Gopal, Physica 27, 1226 (1961).CrossRefGoogle Scholar
  6. 4.
    H. R. O’Neal, Ph.D. thesis (unpublished), University of California, 1963.Google Scholar
  7. 5.
    J. A. Rayne, Austral. J. Phys. 9, 189 (1956).CrossRefGoogle Scholar
  8. 5a.
    K. G. Ramanathan and T. M. Srinivasan, J. Sci. Industr. Res. 16B, 277 (1957).Google Scholar
  9. 6.
    W. E. Gardner and N. Kurti, Proc. Roy. Soc. (London), Ser. A 223, 542 (1954).CrossRefGoogle Scholar
  10. 7.
    C. Kittel, Elementary Statistical Physics, Wiley, New York, 1958.Google Scholar
  11. 7a.
    D. K. C. MacDonald, Introductory Statistical Mechanics for Physicists, Wiley, New York, 1963.Google Scholar
  12. 8.
    F. Lange, Z. Phys. Chem. 110, 343 (1924).Google Scholar
  13. 8a.
    J. C. Southard and D. H. Andrews, J. Franklin Inst. 209, 349 (1930).CrossRefGoogle Scholar
  14. 9.
    G. K. White, Experimental Techniques in Low Temperature Physics, Clarendon, Oxford, 1959.Google Scholar
  15. 10.
    F. E. Hoare, L. C. Jackson, and N. Kurti, Experimental Cryophysics, Butterworth, London, 1961.Google Scholar
  16. 11.
    F. Din and A. H. Cockett, Low Temperature Techniques, Newnes, London, 1960.Google Scholar
  17. 12.
    A. C. Rose-Innes, Low Temperature Techniques, English University Press, London, 1964.Google Scholar
  18. 13.
    D. H. Howling, E. Mendoza, and J. E. Zimmerman, Proc. Roy. Soc. (London), Ser. A 229, 86 (1955).CrossRefGoogle Scholar
  19. 13a.
    N. V. Zavaritsky, Progr. Cryogenics 1, 207 (1959).Google Scholar
  20. 14.
    J. S. Rowlinson, The Perfect Gas, Pergamon, Oxford, 1963, chapter 2.Google Scholar
  21. 15.
    P. H. Keesom and N. Pearlman, Handbuch der Physik, XIV (I), 282 (1956).CrossRefGoogle Scholar
  22. 16.
    D. H. Parkinson, Rept. Progr. Phys. 21, 226 (1958).CrossRefGoogle Scholar
  23. 17.
    R. W. Hill, Progr. Cryogenics 1, 179 (1959).Google Scholar
  24. 17a.
    W. P. White, The Modem Calorimeter, Chem. Pub. Co., New York, 1928.Google Scholar
  25. 17b.
    J. M. Sturtevant, in: A. Weissberger (ed.), Physical Methods of Organic Chemistry, Part I, Interscience, New York, 1959, chapter 10.Google Scholar

Copyright information

© Plenum Press 1966

Authors and Affiliations

  • E. S. R. Gopal
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations