Structural and Histochemical Change in Ventral-Horn Cells Resulting from Sensory Deprivation

  • I. James Young
  • Wilbur F. Rowley


The electrical interdependence of one neuron upon its consequent neuron has long been accepted. The fact that morphologic alterations occur in the cell during injury is also well known. Only within the past decade or so has a metabolic interdependence come to be recognized, but only in specialized cases [14], The dependency of normal neuromuscular function and of the muscle cells, in particular, upon the neurons has long been known, but only within the recent past has the trophic effect of one neuron upon the consequent cell, whether it be nerve [7, 13, 26, 29], muscle [11, 12, 18], gland [2], or mesenchymal [24, 28] cell, become a matter of energetic investigation.


Satellite Cell Dorsal Root DNase Activity Intact Root Sensory Deprivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Austin, L., Bray, J.J., and Young, R.J.: Transport of proteins and ribonucleic acid along the nerve axons, J. Neurochem. 13:1267, 1966.PubMedCrossRefGoogle Scholar
  2. 2.
    Bard, P.: Digestion in the mouth, in: Mosby, C.V. (ed.), Medical Physiology, 1956, p. 481.Google Scholar
  3. 3.
    Barron, D.H.: Structural changes in anterior horn cells following central lesions, Proc. Soc. Biol. Med. 30:1327, 1933.Google Scholar
  4. 4.
    Bodian, D.: New method of staining nerve fibers and nerve endings in mounted paraffin sections, Anat. Record 65:89, 1936.CrossRefGoogle Scholar
  5. 5.
    Bok, S.T. von: The morphology of the dendrite tree, in: Histonomy of the Cerebral Cortex, Elsevier, Amsterdam, 1959, p. 83.Google Scholar
  6. 6.
    Carlssen, C.A., and Thulien, CA.: Regeneration of feline dorsal roots, Experientia 23(2):125, 1967.CrossRefGoogle Scholar
  7. 7.
    Cook, W.H., Walker, J.H., and Barr, H.L.: A cytological study of transneuronal atrophy in the cat and rabbit, J. Comp, Neurol. 94:267, 1951.CrossRefGoogle Scholar
  8. 8.
    Diamond, M.C., Rosenzweig, R., and Krech, D.: Relationships between body weight and skull development in rats raised in enriched and impoverished conditions, J. Exptl. Zool. 160:29, 1965.CrossRefGoogle Scholar
  9. 9.
    Gless, P., Soler, J., and Bailey, R.A.: Retrograde axonal changes of the deafferented nucleus gracilis following midbrain tractotomy, J. Neurol, Neurosurg. Psychiat. 14:281, 1951.CrossRefGoogle Scholar
  10. 10.
    Gomori, G.: An improved histochemical technique for acid phosphatase stain, Stain Technol. 25:81, 1950.Google Scholar
  11. 11.
    Güth, L., and Watson, P.K.: The influence of innervation on the soluble proteins of slow and fast muscles of the rat, Exptl. Neurol. 17:107, 1967.CrossRefGoogle Scholar
  12. 12.
    Güth, L., Zalewsky, A.A., and Brown, W.C.: Quantitative changes in Cholinesterase activity of denervated sole plates following implantation of nerve into muscle, Exptl. Neurol. 16:136, 1966.Google Scholar
  13. 13.
    Hydén, H., and Egyhazi, E.: Nuclear RNA changes of nerve cells during a learning experiment in rats, Proc. Natl. Acad. Sci. U.S. 48(8):1366, 1962.CrossRefGoogle Scholar
  14. 14.
    Hyden, H., and Pigon, A.: A cytophysiology study of the functional relationship between oligodendroglial cells and nerve cells of Deiters’ nucleus, J. Neurochem. 6:57, 1960.PubMedCrossRefGoogle Scholar
  15. 15.
    Klüver, H., and Barrera, E.: A method for the combined staining of cells and fibers in the nervous system, J. Neuropathol. Exptl. Neurol. 12:400, 1953.CrossRefGoogle Scholar
  16. 16.
    Korr, LM., Wilkinson, P.H., and Chornock, F.W.: Axonal delivery of neuroplasmic components to muscle cells. Science 155:342, 1967.PubMedCrossRefGoogle Scholar
  17. 17.
    Krech, D., Rosenzweig, M.R., and Bennett, E.L.: Environmental impoverishment, social isolation and changes in brain chemistry and anatomy, Physiol, and Behav. 1(2):99, 1966.CrossRefGoogle Scholar
  18. 18.
    Mark, R.F., Kampenhausen, G. von, and Lischinsky, D.J.: Nerve—muscle relations in the salamander, possible relevance to their regeneration or muscle specificity, Exptl. Neurol. 16:438, 1966.CrossRefGoogle Scholar
  19. 19.
    Melzack, R., and Burns, S.K.: Neurophysiological effects of sensory restriction, Exptl. Neurol. 13:163. 1965.CrossRefGoogle Scholar
  20. 20.
    Miani, N.: Proximo-distal movement of phospholipid in the axoplasm of the intact and regenerating neurons, in: Singer, M., Mechanisms of neural regeneration, J. Neurochem. 10:859. 1963.Google Scholar
  21. 21.
    Mikeladze, A.L.: Endings of afferent nerve fibers in lumbosacral regions of the spinal cord, Arkch. Anat. Gistol. i Embriol. 48(5):3, 1965.Google Scholar
  22. 22.
    Novikoff, A.B., and Goldfischer, S.: Nucleoside diphosphatase activity in the Golgi apparatus and its usefulness for cytological studies, Proc. Natl. Acad. Sci. U.S. 47:802, 1961.Google Scholar
  23. 23.
    Pevzner, L.Z.: Topochemical aspects of nucleic acid and protein metabolism within the neuron—neuroglia unit of the superior cervical ganglion, J. Neurochem. 12:993, 1965.PubMedCrossRefGoogle Scholar
  24. 24.
    Robbins, N.: The role of nerve in maintenance of frog taste buds, Exptl. Neurol. 17:364, 1967.CrossRefGoogle Scholar
  25. 25.
    Rosenzweig, M.R.: Environmental complexity, cerebral change and behavior. Am. Psychol. 21(4):321, 1966.PubMedCrossRefGoogle Scholar
  26. 26.
    Savich, K.V.: Histochemical characterization of motoneurons of the cat’s spinal cord, with transected anterior and posterior roots, Tsitologiya 4:T294, 1962 (in Russian).Google Scholar
  27. 27.
    Shurley, J.T.: Profound experimental sensory isolation, Am. J. Psychiat. 117:539, 1961.Google Scholar
  28. 28.
    Singer, M.: The trophic quality of the neuron: Some theoretical considerations, Exptl. Neurol. 13:163, 1965.CrossRefGoogle Scholar
  29. 29.
    Stavraky, G.W.: The action of adrenalin on spinal neurons sensitized by partial isolation. Am. J. Physiol. 150:37, 1947.PubMedGoogle Scholar
  30. 30.
    Torvik, A.: Transneuronal changes in the inferior olive and pontine nuclei in kittens, J, Neuropathol. Exptl. Neurol. 15:119, 1956.CrossRefGoogle Scholar
  31. 31.
    Vogt, C., and Vogt, O.: J. Psychol. Neurol. (Leipzig) 28, 1922 cited in: Blackwood, W., McMenemy, W.H., Meyer, A., Norman, R.M., and Russell, D.S. (eds.), Greenfield’s Neuropathology, second edition, The Williams and Wilkins Company, Baltimore, 1963, p. 257.Google Scholar
  32. 32.
    Vorbrodt, A.: Histochemical studies on the intracelluar localization of acid desoxyribo-nuclease, J. Histochem. Cytochem. 9:647, 1961.PubMedCrossRefGoogle Scholar
  33. 33.
    Warrington, W.B.: On the structural alterations observed in nerve cells, J. Physiol. (London) 23:112, 1898.Google Scholar
  34. 34.
    Warrington, W.B.: Further observations on the structural alterations in nerve cells, J. Physiol. (London) 24:464, 1899.Google Scholar
  35. 35.
    Young, I. James: Morphological and histochemical studies of partially and totally deafferented spinal cord segments, Exptl. Neurol. 14:238, 1966.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • I. James Young
  • Wilbur F. Rowley

There are no affiliations available

Personalised recommendations