Effect of Thyroid-Hormone Levels on 35S-Sulfate Pools in Mature and Senile Rat Brain

  • M. J. Short
  • W. P. Wilson
  • J. B. SidburyJr.


In neurophysiological studies concerning the effect of thyroid hormone on electrophysiology of the central nervous system (CNS) in man and animal, we have demonstrated alteration of cerebral evoked potentials [1, 2]. The changes observed involve the secondary component of the evoked potential. This portion of the evoked potential has been interpreted as reflecting the spread of the impulse through a synaptic network surrounding the area of primary reception of the impulse [3], In the process of exciting adjacent dendrites, current must pass through an intercellular space. Conceivably, changes in the physiochemical state of molecules occupying this space would modify current flow, and thus produce the changes in evoked potentials that we observed.


Thyroid Hormone Hyaluronic Acid Lateral Geniculate Nucleus Sulfate Activity Central Nervous Tissue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Short, M. J., Hein, P., and Wilson, W.P.: Thyroid hormone and brain function. III. Influence of triiodothyronine on evoked potentials of the cortex and reticular formation and upon the interrelationship of caudate and reticular activity of the cat, Electroencephalog. Clin. Neurophysiol. 17:414, 1964.CrossRefGoogle Scholar
  2. 2..
    Short, M.J., and Wilson, W.P.: Thyroid hormone and brain function. IV. Effect of triiodothyronine on visual evoked potentials in man, Abstract to be published in Electroencephalog. Clin. Neurophysiol., 1967.Google Scholar
  3. 3.
    John, E.R., Ruchkin, D.S., and Villegas, J.: Experimental background: Signal analysis and behavioral correlations of evoked potential configurations in cats, Ann. N.Y. Acad. Sci. 112:362, 1964.PubMedCrossRefGoogle Scholar
  4. 4.
    Dempsey, E.W., and Wislocki, G.B.: An electron microscopic study of the blood-brain barrier in the rat, employing silver nitrate as a vital stain, J. Biophys. Biochem. Cytol. 1:245, 1955.PubMedCrossRefGoogle Scholar
  5. 5.
    Farquhar, M.G., and Hartmann, J.F.: Neuroglial structure and relationships as revealed by electron microscopy, J. Neuropathol. Exptl. Neurol. 16:18, 1957.CrossRefGoogle Scholar
  6. 6.
    Van Harreveld, A., Crowell, J., and Malhotra, S.K.: A study of extracellular space in central nervous tissue by freeze-substitution, J. Cell. Biol. 25:117, 1965.CrossRefGoogle Scholar
  7. 7.
    Kuffler, S.W., and Potter, D.D.: Glia in the leech central nervous system: Physiological properties and neuron-glia relationship, J. Neurophysiol. 27:290, 1964.PubMedGoogle Scholar
  8. 8.
    Karlsson, U.: Three dimensional studies of neurons in the lateral geniculate nucleus of the rat. II. Environment of perikaryon and proximal parts of their branches, J. Ultrastruct. Res. 16:482, 1966.PubMedCrossRefGoogle Scholar
  9. 9.
    Robertson, J.D.: Unit membranes: A review with recent new studies of experimental alterations and a new subunit structure in synaptic membrane, in: Loocke, M. (ed.), Cellular Membranes in Development, Academic Press, New York, 1964, p. 1.Google Scholar
  10. 10.
    Pease, D.C.: Polysaccharides associated with the exterior surface of epithelial cells: Kidney, intestine, brain, J. Ultrastruct. Res. 15:555, 1966.PubMedCrossRefGoogle Scholar
  11. 11.
    Rambourg, A., and LeBlond, C.P.: Electron microscope observations on the carbohydrate-rich cell coat present at the surface of cell in the rat, J. Cell. Biol. 32:27, 1967.PubMedCrossRefGoogle Scholar
  12. 12.
    Berencsi, G., Krompecher, S., and Laszlo, M.B.: Contribution to the correlation between the thyroid gland and mucopolysaccharide household, Acta Anat. 57:5, 1964.PubMedCrossRefGoogle Scholar
  13. 13.
    Schiller, S., and Dorfman, A.: The metabolism of mucopolysaccharides in animals: The effect of cortisone and hydrocortisone on rat skin. Endocrinology 60:376, 1957.PubMedCrossRefGoogle Scholar
  14. 14.
    Weatherford, T.: Morphological and histochemical studies on the autonomic ganglia of scorbutic guinea pigs, J. Neuropathol. Exptl. Neurol. 20:440, 1961.CrossRefGoogle Scholar
  15. 15.
    Gasic, G., and Morrison, A.B.: Mucopolysaccharides of renal collecting tubular cells in potassium deficient rats, Proc. Soc. Exptl. Biol. Med. 112:871, 1963.Google Scholar
  16. 16.
    Schiller, S., and Dorfman, A.: The distribution of acid mucopolysaccharides in skin of diabetic rats, Biochim. Biophys. Acta 78:371, 1963.CrossRefGoogle Scholar
  17. 17.
    Linker, A., Conlson, W.F., and Carnes, W.H.: Cardiovascular studies on copper-deficient swine. VI. The mucopolysaccharide composition of aorta and cartilage, J. Biol. Chem. 239:1690, 1964.PubMedGoogle Scholar
  18. 18.
    Grad, B., and Hoffman, M.M.: Thyroxine secretion rates and plasma cholesterol levels of young and old rats, Am. J. Physiol. 182:497, 1955.PubMedGoogle Scholar
  19. 19.
    Matthews, B.F.: Composition of articular cartilage in osteoarthritis, Changes in collagen-chondroitin sulphate ratio, Brit. Med. J. 2:660, 1953.PubMedCrossRefGoogle Scholar
  20. 20.
    Crane, W.A.J., and Dutta, L.P.: The influence of age in the uptake of 35S-sulphate and 3H-thymidine by the mesenteric arteries of rats with regenerating adrenal glands, J. Pathol. Bacterid. 88:291, 1964.CrossRefGoogle Scholar
  21. 21.
    Guha, A., Northover, J., and Bachhawat, B.K.: Incorporation of radioactive sulphate into chondroitin sulphate in the developing brain of rats, J. Sci. Ind. Res. (Biol.) 19C:287, 1960.Google Scholar
  22. 22.
    Kowalewski, K.: Incorporation of radiosulfur into the dermal connective tissue of hypothyroid rats. Acta Endocrinol. 28:124, 1958.PubMedGoogle Scholar
  23. 23.
    Fewer, D„ Threadgold, J., and Sheldon, H.: Studies on cartilage: V. Electron microscopic observations on the autoradiographic localization of Sx in cells and matrix, J. Ultrastruct. Res. 11:166. 1964.PubMedCrossRefGoogle Scholar
  24. 24.
    Laurent, T.C.: A comparative study of physico-chemical properties of hyaluronic acid prepared according to different methods and from different tissues, Arkiv Kemi Band 11:487, 1957.Google Scholar
  25. 25.
    Farris, E.J.: The rat as an experimental animal, in: Harris, E.J. (ed.), The Care and Breeding of Laboratory Animals, 34th edition, John Wiley and Sons, New York, 1957, p. 64.Google Scholar
  26. 26.
    Maley, G.F., and Lardy, H.A.: Efficiency of phosphorylation in selected oxidation by mitochondria from normal and thyrotoxic rat livers, J. Biol. Chem. 215:377, 1955.PubMedGoogle Scholar
  27. 27.
    Patterson, M.S., and Greene, R.: Measurement of low energy beta-emitters in aqueous solution by liquid scintillation counting of emulsions. Anal. Chem. 37:854, 1965.PubMedCrossRefGoogle Scholar
  28. 28.
    Conrad, A.: The psychiatric study of hyperthyroid patients, J. Nerv. Ment. Dis. 79:505, 656, 1934.CrossRefGoogle Scholar
  29. 29.
    Scheinberg, P.: Cerebral circulation and metabolism in hyperthyroidism, J. Clin. Invest. 29:1010, 1950.PubMedCrossRefGoogle Scholar
  30. 30.
    Sokoloff, L., Wechsler, R.L., Mangold, R, Balls, K., and Kety, S.S.: Cerebral blood flow and O2 consumption in hyperthyroidism before and after treatment, J. Clin. Invest. 32:202, 1953.PubMedCrossRefGoogle Scholar
  31. 31.
    Kety, S.S.: Blood flow and metabolism of the human brain in health and disease, in: Elliott, K.A.C., Page, I.H., and Quastel, J.H. (eds.), Neurochemistry, the Chemistry of Brain and Nerve, 2nd edition, Charles C. Thomas, Springfield, 1962. 1962, p. 113.Google Scholar
  32. 32.
    Scheinberg, P., and Jayne, H.W.: Factors influencing cerebral flow and metabolism. Circulation 5:225, 1952.PubMedCrossRefGoogle Scholar
  33. 33.
    Holmgrad, A.: On the sulphate metabolism of the sulphocerebrosides of the brain, Acta Physiol. Scand. 37:183, 1956.Google Scholar
  34. 34.
    Bostrom, H., and Agvist, S.: Utilization of S35-labelled sodium sulphate in the synthesis of chondroitin sulfuric acid, taurine, methionine, and cystine, Acta Chem. Scand. 6:1557, 1952.CrossRefGoogle Scholar
  35. 35.
    Green, J.P., and Robinson, J.D.: The turnover of S35-sulfate in sulfomucopolys acchar ides and cerebron sulfuric acid of rat brain. Fed. Proc. 18:398, 1959.Google Scholar
  36. 36.
    Robinson, J.D., Jr., and Green, J.P.: Sulfomucopolysaccharides in the brain, Yale J. Biol. Med. 35:248, 1962.PubMedGoogle Scholar
  37. 37.
    Brante, G.: Hexosamine compounds in the nervous system, in: Richter, D. (ed.), Metabolism of the Nervous System, Pergamon Press, London, 1957, p. 112.Google Scholar
  38. 38.
    Cornfield, J., Steinfield, J., and Greenhouse, S.W.: Models for the interpretation of experiments using tracer compounds, Biometrics 16:212, 1960.CrossRefGoogle Scholar
  39. 39.
    Walser, M.: Volume of distribution of radiosulfate as a measure of the extracellular fluid, Proc. Soc. Exptl. Biol. Med. 79:372, 1952.Google Scholar
  40. 40.
    Murphy, B., Dossetor, J.B., and Beck, J.C.: Serial determinations of extracellular fluid volume using radiosulphate space method. Can. J. Biochem. Physiol. 41:497, 1963.PubMedCrossRefGoogle Scholar
  41. 41.
    Agostini, C., Comolli, R., Perin, A., and Guidotti, G.: The influence of thyroid on the incorporation of radiosulfate into sulfomucopolysaccharides of rat aorta, J. Gerontol. 17:15, 1962.CrossRefGoogle Scholar
  42. 42.
    Weiner, R., Iannanccone, A., Eisenberg, J., Griboff, S.I., Ludwig, A.W., and Soffet, L.J.: Influence of hormone therapy on body fluids, electrolyte balance, and mucopolysaccharides in myxedema, J. Clin. Endocrinol. 15:1131, 1955.CrossRefGoogle Scholar
  43. 43.
    Malawista, I., and Schubert, M.: Chondromucoprotein: New extraction method and alkaline degradation, J. Biol. Chem. 230:535, 1958.PubMedGoogle Scholar
  44. 44.
    Gerber, B.R., Franklin, E.C., and Schubert, M.: Ultracentrifugal fractionation of bovine nasal chondromucoprotein, J. Biol. Chem. 235:2870, 1960.PubMedGoogle Scholar
  45. 45.
    Robertson, J.D.: The occurrence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains, J. Biophys. Biochem. Cytol. 19:201, 1963.CrossRefGoogle Scholar
  46. 46.
    Mathews, M.B.: Chondroitinsulfuric acid—A linear polyelectrolyte. Arch. Biochem. Biophys. 43:181, 1953.PubMedCrossRefGoogle Scholar
  47. 47.
    Castor, C.W., and Prince, R.K.: Modulation of the intrinsic viscosity of hyaluronic acid formed by human “fibroblasts” in vitro: The effects of hydrocortisone and colchicine, Bio-chim. Biophys. Acta 83:165, 1964.Google Scholar
  48. 48.
    Nicholls, J.G., and Kuffler, S.W.: Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leech: Ionic composition of glial cells and neurons, J. Neurophysiol. 27:645, 1964.PubMedGoogle Scholar
  49. 49.
    Hasson A.: Interaction of quaternary ammonium bases with a purified acid polysaccharide and other macromolecules from the electric organ of electric eel, Biochem. Biophys. Acta 56:275, 1962.CrossRefGoogle Scholar
  50. 50.
    Lorenzo, A.V., Fernandez, C., and Roth, L.J.: Physiologically induced alteration of sulfate penetration into brain. Arch. Neurol. 12:128, 1965.PubMedCrossRefGoogle Scholar
  51. 51.
    Layton, L.L., and Denko, C.W.: Influence of age upon chondroitin sulfate synthesis by the tissues of normal dba mice. Cancer 5:405, 1952.PubMedCrossRefGoogle Scholar
  52. 52.
    Buerger, M.: Die chemische Biomorphose des menschlichen Zentralnervensystems, Medizinische 14:561, 1956.Google Scholar
  53. 53.
    Woodford-Williams, E.: Senile type body-water changes in degenerative diseases of the central nervous system in middle-aged subjects, Brit. Med. J. 1:1126, 1961.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • M. J. Short
  • W. P. Wilson
  • J. B. SidburyJr.

There are no affiliations available

Personalised recommendations