Development of Immune Potential and Migration Pattern of Cells from Germfree (GF) and Conventionally (CONV) Reared Rats

  • H. Tlaskalova-Hogenova
  • V. Vetvicka
  • J. Sterzl
  • R. Stepankova
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 149)


Absence or low levels of natural antibodies, immunoglobulins and spontaneous plaque-forming cells described in GF animals of some species [piglets (1,2), sheep (3), rabbits (4,5)] indicate that significant levels of natural antibodies can arise as the consequence of inapparent immunization by environmental antigens. Also the rapid increase in the capacity to form antibodies after imunization during first weeks of life in conventional conditions contrasting with the relatively stable level of the response in GF piglets (1) point to the role of microflora antigens in the postnatal maturation of the immune system (1–3,5). On the other hand, there exist animal species, e.g. mice, in which even in GF environment the immunological capacity and presence of natural antibodies is comparable to that of CONV reared counterparts (6,7).


Salivary Gland Mesenteric Lymph Node Natural Antibody Environmental Antigen Postnatal Maturation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Sterzl, J. Vesely, M. Jilek and L. Mandel, in: “Molecular and Cellular Basis of Antibody Formation”, p. 463, J. Sterzl et al., eds., Publ. House of Czech. Acad. Sci., Prague (1965).Google Scholar
  2. 2.
    H. Tlaskalova, J. Sterzl, P. Hajek, M. Pospisil, I. Riha, H. Marvanova, V. Kamarytova, L. Mandel, J. Kruml and F. Kovaru, in: “Developmental Aspects of Antibody Formation and Structure”, p. 767, J. Sterzl and I. Riha, eds., Academia, Prague (1970).Google Scholar
  3. 3.
    M. Wagner. Ann. N.Y. Acad. Sci. 78:261 (1959).CrossRefGoogle Scholar
  4. 4.
    B.S. Wostmann. Ann. N.Y. Acad. Sci. 94:273 (1961).Google Scholar
  5. 5.
    H. Tlaskalova-Hogenova and R. Stepankova. Folia Biol. (Prague) 26:81 (1980).Google Scholar
  6. 6.
    A.A. Nordin. Proc. Soc. Exp. Biol. Med. 129:57 (1968).PubMedGoogle Scholar
  7. 7.
    M. Bosma, T. Makinodan and H.E. Walburg. J. Immunol. 99:420 (1967).PubMedGoogle Scholar
  8. 8.
    J. Bienenstock and A.D. Befus. Immunology 41:249 (1980).PubMedGoogle Scholar
  9. 9.
    J. Mestecky, J.R. McGhee, S.S. Crago, S. Jackson, M. Kilian, H. Kiyono, J.L. Babb and S.M. Michalek. J. Reticuloendoth. Soc. 28/Suppl.:45s (1980).Google Scholar
  10. 10.
    P. Weisz-Carrington, M.E. Roux, M. McWilliams, J.M. Phillips-Quagliata and M.E. Lamm. J. Immunol. 123:1705 (1979).PubMedGoogle Scholar
  11. 11.
    D.M.V. Parott, in: “Immunology of Breast Milk”, P.L. Ogra and D. Dayton, eds., Raven Press, New York (1979).Google Scholar
  12. 12.
    J.J. Cebra, P.J. Gearhart, J.F. Halsey, J.L. Hurwitz and R.D. Shahin. J. Reticuloendoth. Soc. 28/Suppl: 61s (1980).Google Scholar
  13. 13.
    T.E. Halstead, and J.G. Hall. Transplantation 14:339 (1972).PubMedCrossRefGoogle Scholar
  14. 14.
    N. Pierce, and J.L. Gowans. J. Exp. Med. 142:1550 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • H. Tlaskalova-Hogenova
    • 1
  • V. Vetvicka
    • 1
  • J. Sterzl
    • 1
  • R. Stepankova
    • 1
  1. 1.Institute of MicrobiologyCzechoslovak Academy of SciencesPragueCzechoslovakia

Personalised recommendations