Phylogeny and Paleontology

  • Bobb Schaeffer
  • Max K. Hecht
  • Niles Eldredge


Paleontologists have traditionally regarded the temporal sequence of fossils as central to the concept of phylogeny. In recent years the significance of the time aspect has been questioned by a number of systematists who argue that the fossil record can offer only a very incomplete picture of phylogeny and that temporal criteria are generally less reliable than morphologic ones in working out relationships. We intend to explore these different opinions by considering both the nature of paleontological data and some methodological generalizations concerning their use.


Character State Fossil Record Odontoid Process Paleontological Data Fossil Taxon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brundin, L. 1966. Transantarctic relationships and their significance, as evidenced by chironomid midges, with a monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae. K. Svenska Vet. Akad. Handl., 11:1–472.Google Scholar
  2. Brundin, L. 1968. Application of phylogenetic principles in systematics and evolutionary theory. In Ørvig, T., ed., Current Problems of Lower Vertebrate Phylogeny. Nobel Symposium 4, pp. 473–495. New York, John Wiley and Sons.Google Scholar
  3. Colless, D. H. 1967. The phylogenetic fallacy. Syst. Zool., 16:289–295.CrossRefGoogle Scholar
  4. Crowson, R. A. 1970. Classification and Biology. London, Heinemann Educational Books, Ltd.Google Scholar
  5. DeBeer, G. A. 1954. Archaeopteryx and evolution. Advance. Sci., 42:1–11.Google Scholar
  6. Eldredge, N. 1971a. Patterns of cephalic musculature in the Phacopina (Trilobita) and their phylogenetic significance. J. Paleont., 45:52–67.Google Scholar
  7. Eldredge, N. 1971b. The allopatric model and phylogeny in Paleozoic invertebrates. Evolution, 25:156–167.CrossRefGoogle Scholar
  8. Eldredge, N. and S. J. Gould. (Ms.). Speciation and punctuated equilibria: an alternative to phyletic gradualism. In Schöpf, T. J. M., ed., Concepts and Models in Paleobiology.Google Scholar
  9. Farris, J. S., A. G. Kluge and M. J. Eckardt. 1970. A numerical approach to phylogenetic systematics. Syst. Zool., 19:172–189.CrossRefGoogle Scholar
  10. Hennig, W. 1966. Phylogenetic Systematics. Urbana, University of Illinois Press.Google Scholar
  11. Hull, D. L. 1967. Certainty and circularity in evolutionary taxonomy. Evolution, 21:174–189.CrossRefGoogle Scholar
  12. Huxley, J. S. 1938. Species formation and geographical isolation. Proc. Linn. Soc. London, 1937–1938:253–264.CrossRefGoogle Scholar
  13. Inger, R. F. 1967. The development of a phylogeny of frogs. Evolution, 21:369–384.CrossRefGoogle Scholar
  14. Jardine, N. 1969. The observational and theoretical components of homology: a study based on the morphology of the dermal skull-roofs of rhipidistian fishes. Biol. J. Linn. Soc., 1:327–361.CrossRefGoogle Scholar
  15. Kluge, A. G. 1971. Concepts and principles of morphologic and functional studies. In Waterman, A. J., ed., Chordate Structure and Function, pp. 3–41. New York, MacMillan Co.Google Scholar
  16. Knight, J. B. 1952. Primitive fossil gastropods and their bearing on gastropod classification. Smithsonian Misc. Coll., 117:1–56.Google Scholar
  17. Lemche, H., and K. G. Wingstrand. 1959. The anatomy of Neopilina galatheae. Galathea Report, 3:9–72.Google Scholar
  18. Maslin, T. P. 1952. Morphological criteria of phyletic relationships. Syst. Zool., 1:49–70.CrossRefGoogle Scholar
  19. Matthew, W. D. 1926. Early days of fossil hunting in the high plains. Natural. Hist., 26:449–454.Google Scholar
  20. Mayr, E. 1969. Principles of Systematic Zoology. New York, McGraw-Hill.Google Scholar
  21. Moss, W. W., and W. A. Webster. 1969. A numerical taxonomic study of a group of selected strongylates (Nematoda). Syst. Zool., 18:423–443.PubMedCrossRefGoogle Scholar
  22. Naef, A. 1926. Studien zur generellen Morphologie der Mollusken. 3. Ergeb. Zool. (Jena), 6:27–124.Google Scholar
  23. Nelson, G. J. 1970. Outline of a theory of comparative biology. Syst. Zool., 19:373–384.PubMedCrossRefGoogle Scholar
  24. Silvestri, L. G., and L. R. Hill. 1964. Some problems of the taxometric approach. In Heywood, V. H., and J. McNeill, eds., Phenetic and phylogenetic classification. Syst. Assoc. Publ., 6:87–103.Google Scholar
  25. Simpson, G. G. 1943. Criteria for genera, species, and subspecies in zoology and paleozoology. Ann. N. Y. Acad. Sci., 44(2): 145–178.CrossRefGoogle Scholar
  26. Simpson, G. G. 1953. The Major Features of Evolution. New York, Columbia Univ. Press.Google Scholar
  27. Simpson, G. G. 1961. Principles of Animal Taxonomy. New York, Columbia Univ. Press.Google Scholar
  28. Sokal, R. R., and P. H. Sneath. 1963. Principles of Numerical Taxonomy. San Francisco, W. H. Freeman and Co.Google Scholar
  29. Vagvolgyi, J. 1967. On the origin of molluscs, the coelom and coelomic segmentation. Syst. Zool., 16:153–168.CrossRefGoogle Scholar
  30. Wilson, E. O. 1965. A consistency test for phylogenies based on contemporaneous species. Syst. Zool., 14:214–220.CrossRefGoogle Scholar
  31. Zangerl, R. 1948. The methods of comparative anatomy and its contribution to the study of evolution. Evolution, 2:351–374.PubMedCrossRefGoogle Scholar

Copyright information

© Meredith Corporation 1972

Authors and Affiliations

  • Bobb Schaeffer
    • 1
  • Max K. Hecht
    • 1
  • Niles Eldredge
    • 1
  1. 1.The American Museum of Natural HistoryNew YorkUSA

Personalised recommendations